
www.manaraa.com

Softw Syst Model (2014) 13:361–390
DOI 10.1007/s10270-011-0222-z

REGULAR PAPER

Enhancing the OPEN Process Framework with service-oriented
method fragments

Mahdi Fahmideh Gholami · Mohsen Sharifi ·
Pooyan Jamshidi

Received: 23 April 2011 / Revised: 5 October 2011 / Accepted: 28 October 2011 / Published online: 16 November 2011
© Springer-Verlag 2011

Abstract Service orientation is a promising paradigm that
enables the engineering of large-scale distributed software
systems using rigorous software development processes.
The existing problem is that every service-oriented software
development project often requires a customized develop-
ment process that provides specific service-oriented soft-
ware engineering tasks in support of requirements unique
to that project. To resolve this problem and allow situational
method engineering, we have defined a set of method frag-
ments in support of the engineering of the project-specific
service-oriented software development processes. We have
derived the proposed method fragments from the recurring
features of 11 prominent service-oriented software develop-
ment methodologies using a systematic mining approach. We

Communicated by Prof. Brian Henderson-Sellers.

Preliminary contributions of authors on the proposed subject matter of
this paper presented in conferences are as follows: (1) Fifth IEEE
International Conference on Research Challenges in Information
Science (RCIS’11), France, 19–21 May 2011. (2) Second
International Conference on Software Engineering and Computer
Systems (ICSECS’11), Malaysia, 27–29 June 2011. (3) 12th
International Conference on Computer Modeling and Simulation
(UKSim-AMSS), UK, 24–26 March 2010. (4) European Modeling
Symposium (EMS’10), Pisa, Italy, 17–19 November 2010.

M. F. Gholami · M. Sharifi (B)
School of Computer Engineering,
Iran University of Science and Technology,
Tehran, Iran
e-mail: msharifi@iust.ac.ir

M. F. Gholami
e-mail: m.fahmideh@comp.iust.ac.ir

P. Jamshidi
School of Computing, Lero-The Irish Software Engineering Research
Centre, Dublin City University, Dublin, Ireland
e-mail: pooyan.jamshidi@computing.dcu.ie

have added these new fragments to the repository of OPEN
Process Framework to make them available to software engi-
neers as reusable fragments using this well-known method
repository.

Keywords Service-oriented software development ·
OPEN Process Framework · OPF repository · Method
fragment · Situational method engineering

1 Introduction

Software engineers are currently faced with increasing
demands for the development of software systems that are
heterogeneous, geographically distributed and dynamic in
nature in the sense that system components can be dynam-
ically detached, added, or reconfigured at runtime [1]. Ser-
vice-oriented paradigm has provided the basic concepts and
means for development of such software systems. Services
as fundamental elements of service-oriented systems play a
pivotal role in service-oriented software development. They
are self-contained, loosely coupled, platform independent,
stand-alone, and autonomous elements that form the under-
pinning of service-oriented systems [2]. A number of avail-
able published services can be composed together to form
a large software system. Services collaborate via standard
message protocols in a loosely coupled distributed heteroge-
neous environment. It is thus possible for software engineers
to develop service-oriented software systems via composi-
tion of discovered services during software construction or
execution rather than crudely following traditional phases of
analysis, design, and implementation. To take advantage of
existing services, service-oriented software developers must
perform extra tasks compared to traditional software devel-
opers that are specific to service orientation. Furthermore,

123

www.manaraa.com

362 M. F. Gholami et al.

software requirements are less known to service-oriented
software developers, while traditional software developers
have more knowledge about software requirements at earlier
stages of software development and know the tasks they must
perform to satisfy these requirements earlier [3].

Service-oriented software development methodologies
(SDMs) have tried to identify tasks that service-oriented soft-
ware developers must carry out in addition to tasks carried out
in traditional software development methodologies. These
extra tasks are specific to service-oriented software develop-
ment (SOSD). Although SDMs have some common features
(e.g., cover the same life cycle phases), they have been pro-
posed for different purposes, ranging from project manage-
ment to system modernization, and from business analysis
to development of technical solutions [4]. Given the variety
of existing SDMs, it is hard for software engineers to decide
which SDM fits best the specific needs of a project. Fur-
thermore, specific SOSD tasks in service-oriented SDMs are
tightly interwoven with traditional tasks making it very hard
for developers to extract and assemble the required SOSD
tasks in support of requirements of a specific project. This
asserts the evidence that there is no universal software devel-
opment process1 that is appropriate for all situations [5–8].
Some of the issues that developers must consider for every
situation include organizational maturity and culture, peo-
ple skills, commercial and development strategies, business
constraints, and tools [9,10]. They must therefore construct
their own project-specific SDM or software process for the
development of their software.

One of the well-known approaches for tailoring SDMs
is situational method engineering (SME), wherein a project-
specific SDM is constructed from reusable method fragments
[11,12] or method chunks [7,13]. To allow the construction
of a wide range of project-specific SDMs by developers and
method engineers, a repository of method chunks is nec-
essary [5]. An established approach in line with the ideas
of SME is the Object-oriented Process, Environment, and
Notation (OPEN) [14,15]. OPEN has a repository of reusable
method fragments called OPF, from which method engineers
can select method fragments using suitable construction
guidelines. They can then assemble their selected fragments
to construct a wide spectrum of project-specific SDMs based
on the unique set of requirements of SDMs. Existing method
fragments in OPF can be used in the construction of many
types of situational SDMs except for service-oriented SDMs.
In other words, one of the main shortcomings of OPEN is
its lack of support for SOSD. Existing method fragments
in OPF repository are mainly intended for object-oriented
(OO) software development, while method fragments in sup-

1 We have used the terms method, methodology, software development
methodology, and software development process synonymously in this
paper.

port of agility and aspect orientations are also forthcoming
[36–39]. Although there are many commonalities between
OO software development and SOSD, they have many dif-
ferences too requiring new method fragments in support
of SOSD.

Motivated to enhance OPF repository, we propose a new
set of method fragments in this paper in support of SOSD in
conformance with the underpinning metamodel standard of
OPEN [27] using our previous systematic approach [16]. We
have designed these method fragments in such a way as to
facilitate the engineering of service-oriented SDMs based on
OPEN. To do so, we studied the SOSD literature, specifically
the development processes of most well-known existing ser-
vice-oriented SDMs, extracted their recurrent tasks, and pre-
sented the extracted tasks in the form of method fragments.
OPEN CASE tools [17] that manage the OPF repository can
import the proposed method fragments as extensions to their
existing OPF repository and use them to construct project-
specific service-oriented SDM.

The main audiences of our research reported in this paper
are those specific groups of software developers who are
method engineers or process engineers. Generally, method
engineers are responsible for constructing, tailoring, and
maintaining software processes for use in a wide range of
software projects in a software development organization.
In the realm of service-oriented systems, method engineers
need a set of domain-specific method fragments, as reus-
able building blocks of methodologies, to assemble method
fragments together and construct a new project-specific ser-
vice-oriented methodology. Notwithstanding the multitude
of service-oriented development methodologies, the lack of
knowledge about service-oriented software development in
a well-structured and standard format has long been felt. The
proposed method fragments, as methodological knowledge,
provide support for method engineers to create knowledge on
developing service-oriented systems and share it with other
method engineers. Fortunately, OPEN is a good candidate
because it provides a standard meta-model for representation
of methodological knowledge via autonomous and coherent
method fragments.

In addition, from a method engineer’s point of view, the
authors suppose that contributed method fragments represent
pivotal activities, rather than traditional software engineer-
ing activities and practices. The proposed fragments must
be incorporated into the software development process when
an inherently complex and dynamic distributed system is
being developed and maintained in a service-oriented style.
It is generally agreed today that method fragments can cap-
ture and represent the knowledge on software processes in a
well-structured and reusable format.

Having delineated the outline of our research, we have
organized the rest of the paper as follows. Section 2
presents the basic concepts underlying our research. Sec-

123

www.manaraa.com

Enhancing the OPEN Process Framework 363

tion 3 presents a brief review of prominent service-oriented
SDMs that have been selected as main sources to define
new method fragments. Section 5 explains the way in which
appropriate method fragments have been constructed. Sec-
tion 6 presents our proposed method fragments. Section 7
identifies the position of these method fragments in the OPEN
process framework. Section 8 presents a discussion on the
proposed method fragments. Section 8 shows the applicabil-
ity of the new method fragments through presentation of a
partial case study. Section 9 concludes the paper and presents
further extensions to the reported research.

2 Background

In this section, we briefly review the main concepts
underlying our proposition in this paper.

2.1 Situational method engineering

The prevalent belief that no single software development pro-
cess can be applicable to all situations is the main reason for
the emergence of method engineering (ME). ME was first
introduced by Kumar [5] as a software engineering discipline
aimed at constructing a project-specific software develop-
ment process to meet given organizational characteristics and
project situations. Brinkkemper [6] elaborated ME definition
later to: “The engineering discipline to design, construct, and
adapt methods, techniques and tools for the development of
information systems”. The most well-known subset of ME,
namely SME, is concerned with the construction, adaptation,
or enhancement of a suitable SDM for the project at hand
instead of looking for a universal or widely applicable one [5–
8]. In the SME approach, an SDM is constructed from a num-
ber of encapsulated and fragmentized methods stored in a
repository. Typically, a method engineer goes through the fol-
lowing SME steps to construct a project-specific SDM [19]:

1. Elicitation and specification of specific requirements of
target SDM.

2. Selection of a number of most relevant method fragments
from the repository based on a number of situational fac-
tors highly specific to the particular software develop-
ment organization and particular situation of the project.

3. Assembly of the chosen method fragments to form a
coherent project-specific SDM.

Method engineers can use computer aided method engineer-
ing (CAME) tools to do the above four steps for saving, restor-
ing, selecting, and assembling method fragments [21]. One
instance of the SME approach that is highly compatible with
the above steps and is extensively used in the development of
a wide range of software project types, especially in the OO

context, is the OPEN Process Framework [14,15]. Industrial
use of OPEN demonstrates its viability in software develop-
ment [22] so much so that we have been motivated to base
our research on OPEN. In the next section, we present OPEN
in more depth.

2.2 OPEN Process Framework as a foundation for SME

OPEN is the oldest established software development pro-
cess introduced in 1996 as a result of the integration of three
second-generation OO software development SDMs, namely
MOSES [232023], SOMA [24], and Firesmith. OPEN is
known as one of the most popular software development
processes with support for full life cycle. OPEN has been
updated recently to be in conformance with ISO/IEC 24744
[25], which is mainly intended for use in the development of
software systems or in the construction of project-specific
SDMs based on projects’ circumstances. A not-for-profit
consortium comprising an international group of methodol-
ogists, academics, and CASE tool vendors maintains OPEN
[26]. OPEN contains an underpinning metamodel (a model
for describing method fragments or software development
processes), a rich repository of method fragments, and sev-
eral kinds of usage guidelines that explain how method
engineers can use method fragments. To construct a project-
specific SDM, a method engineer selects his/her required
method fragments from the OPF repository, wherein each
method fragment is an instance of OPEN metamodel (Fig. 1).
Given our objective in this paper, we study the metamodel of
OPEN and its OPF repository in more detail here.

2.2.1 Metamodel

The metamodel of OPEN provides a clear way for formally
representing method fragments such as phases, processes,
tasks, techniques, work products, and roles. It is imperative
that each method fragment should conform to the OPEN
metamodel standard. This implies that new method frag-
ments extending the repository must conform with the meta-
model too. It should be noted that the underpinning OPEN’s
metamodel has been updated and aligned with the ISO/IEC
24744 metamodel. This standard metamodel incorporates
experience from earlier SME and is used to represent SDMs
[25]. In this paper, we have used the recently updated OPEN
metamodel terminology. Having the recent update of OPEN
metamodel with ISO/IEC 24744 in mind, the five core classes
of method fragments are as follows (Fig. 2) [14,15]:

1. WorkUnitKind Operations that should be performed by
persons or tools to develop the required WorkProduct-
Kind. WorkUnitKinds are categorized in three levels of
abstraction:

123

www.manaraa.com

364 M. F. Gholami et al.

Fig. 1 Construction of a
project-specific SDM from
OPEN’s metamodel (adopted
from [27])

Fig. 2 Constituents of OPEN’s
Metamodel based on ISO/IEC
24744 terminology (adopted
from [9])

• ProcessKind ProcessKind (called Activity in the
older version of OPEN) is a coarse-grain type of
typical WorkUnitKind consisting of a cohesive col-
lection of TaskKinds that produces a related set of
WorkProductKinds. In other words, a ProcessKind
includes a group of relevant TaskKinds. Sometimes,
ProcessKind has been referred to as a software engi-
neering discipline.

• TaskKind TaskKind is a fine-grain type of WorkUnit-
Kind consisting of a cohesive collection of steps that
produce WorkProductKind(s).

• TechniqueKind TechniqueKind is an explicit set of
procedures that explain how a TaskKind should be
performed

2. WorkProductKind WorkProductKind is any significant
produced artifact such as a diagram, a graphical or tex-
tual description, or a program produced during software
development.

3. ProducerKind Persons or tools that develop expected
WorkProductKinds are ProducerKinds.

4. Language Language is used to represent the produced
artifacts using a modeling language, such as Unified
Modeling Language (UML) [28], Object Modeling Lan-
guage (OML) [29], or an implementation language.

5. StageKind StageKind is intended for use in defining the
overall macro-scale and time-box of a set of cohesive
WorkUnitKinds during the enactment of an instantiated
OPEN. The whole instantiated process is structured tem-
porally by the use of StageKind concept element.

2.2.2 OPF repository

Besides the metamodel, OPEN contains a large number of
method fragments having different levels of granularity (Pro-
cessKinds,TaskKinds,andTechniqueKinds)storedinarepos-
itory.OPFrecommendstheuseoftheDeonticmatrixapproach
[13] for selecting method fragments from a repository. A two-
dimensional Deontic matrix represents possible relationships
between each pair of method fragments in the OPF reposi-
tory. According to the five classes of the OPF’s method frag-
ments, possible meaningful combinations are as follows [30]:
ProcessKind/TaskKind, TaskKind/TechniqueKind, Produc-
erKind/TaskKind, TaskKind/Work ProductKind, Producer-
Kind/WorkProductKind, and WorkProductKind/Language.
Foreachcellof thematrix,afive-scalevaluecanbeassigned—
M: Mandatory, R: Recommended, O: Optional, D: Discour-
aged, and F: Forbidden. Processes can be considered as

123

www.manaraa.com

Enhancing the OPEN Process Framework 365

Table 1 Deontic Matrix showing the possible relations between the
Requirements Engineering Process and its relevant TaskKind method
fragments (adopted from [35])

TaskKind Requirements Engineering

Develop BOM O

Identify context R

Conduct market research O

Create white site O

Identify user requirements M

Define problem and establish mission O
and objectives

Establish user DB requirements O

traditional activities in software development process, such as
the Design software architecture process, which includes a
number of cohesive tasks such as Evaluate software architec-
ture, Select software architectural patterns, Develop initial
software architecture, Document relevant software archi-
tecture views, and Realize quality attributes [31]. To fill in
the cells of the matrix with expected values, the method engi-
neer should consider many situational factors such as project
size, skills of the development team, organizational culture,
and usage context of the target SDM. For instance, Table 1
shows a part of the decision-making process of assigning enu-
merated values in Deontic matrix in a small B2C (business-to-
customer) system [35]. The method engineer assigns possible
values to make a mapping between requirements engineer-
ing process and its fine-grain requirements engineering tasks.
Having situational factors of the project in mind, the method
engineer decides that Identify user requirements is manda-
tory for the method (denoted by M). In contrast, the Identify
context task is considered as optional (denoted by O) while
Conduct market research is recommended (denoted by R).
The method engineer can decide similarly if other processes
and task method fragments are mandatory or optional. OPEN
metamodel and OPF repository of method fragments pro-
vide the means for SME. The OPF repository provides reus-
able method fragments as well as well-known and traditional
processes and tasks for the construction of project-specific
SDMs.

3 Related work

OPEN has aimed to support the construction of SDMs in
the manifold spectrum of software development. Over the
years, several researchers have provided extensions to OPF in
support of different software development approaches. Hen-
derson-Sellers et al. have done significant work in enhancing
OPF. They have added supportive method fragments to facil-

itate situational software process construction for different
approaches of software development as listed below:

• Extension for component-based development (CBD) sup-
port Henderson-Sellers [33] has enriched OPF by specific
method fragments to support situational software pro-
cess construction for component-based software devel-
opment.

• Extension for Web-based software development support
Concerned with the characteristics of Web development,
Haire et al. [34,35] have added a number of reusable
method fragments to the repository for Web-based soft-
ware development.

• Extension for aspect-oriented programming (AOP)Sup-
port Given that AOP aims to modularize crosscutting con-
cerns of software development into a cohesive structure,
Henderson-Sellers et al. [36] have added new method
fragments in support of AOP to the traditional develop-
ment method fragments of OPF.

• Agent-OPEN [37] In this work, a number of new method
fragments have been proposed to support agent-oriented
software development. The OPF repository has been inte-
grated with agent concepts. The assortment of specific
agent-oriented method fragments can be found in [37].

• Extension for security support Henderson-Sellers et al.
[38] have presented a set of security-focused method frag-
ments that have been extracted from the agent-oriented
secure TROPS [40,41] methodology and added to the
OPEN repository.

• Other supports for organizational transition [42,43] and
usage-centered design [44] have been added to OPF too.

Although OPF has matured, and contains method fragments
in support of various approaches such as OO, CBD, AOP,
and Agent-OPEN development, we have identified deficien-
cies in the current OPF support for SOSD [45]. A major
problem in SOSD arises when method engineers decide
to construct a project-specific service-oriented development
process. While the tendency for the development of service-
oriented software systems and consequently appropriate ser-
vice-oriented SDMs have received much attention [46,47],
we investigated the current OPF method fragments and found
no support for defining specific method fragments for SOSD
[45]. For instance, identifying services from business pro-
cesses, utilizing existing functionalities of legacy systems,
and discovering required services published on the Web are
only a number of concerns that force to boost OPF in favor
of SOSD.

Aiming at resolving the above shortcoming, we have
enhanced the OPF repository with new method fragments
in support of service-oriented development processes. To
do this, we studied service-oriented development challenges
[46] and current prominent service-oriented SDMs that

123

www.manaraa.com

366 M. F. Gholami et al.

prescribe successive systematic processes and tasks to handle
service-oriented issues [48]. We have then explored service-
oriented SDMs and extracted a set of processes and tasks
[16] as method fragments for SOSD in conformance with
the standard format of the metamodel of OPEN, so that they
can be easily imported into OPF tools.

4 Service-oriented SDMs: appropriate sources
for derivation of new method fragments

Service orientation is currently appraised as a favorable
approach in which services are utilized as fundamental ele-
ments to develop distributed software systems. Services are
realized via Web-service [50] technologies. Web Services
are independent, self-contained, reusable, and loosely cou-
pled computational elements that form the underpinning of
service-oriented systems. They collaborate via standard mes-
sage protocols in a loosely coupled distributed heterogeneous
environment. Therefore, a number of available published ser-
vices can be composed together to develop a large software
system.

In these regards, academia, industrial practitioners, and
grey literature such as white papers or technical reports
SOSD approach have emerged recently in addressing huge
issues of service-oriented software systems such as Service
identification, Service specification, Service realization, Ser-
vice discovery, Service composition and Dynamic reconfigu-
ration, and Service governance [46,47,51]. Service-oriented
SDMs provide systematic processes, guidelines, and tech-
niques required for handling of these issues. All of these
end-to-end SDMs use existing traditional software engineer-
ing processes with some enhancements that are exclusive
to SOSD. We briefly describe notable existing service-ori-
ented SDMs here. The major criteria for our selection of
these SDMs include their successful applications in real pro-
jects, their high maturity levels, their high rates of citations,
better accessibility to their resources, and their better docu-
mentations. A comparative study of existing service-oriented
SDMs can be found in [47–49].

• IBM SOMA [52] In its original form, SDM included
three main phases for identification, specification, and
realization of services. Arsanjani et al. expanded this
to seven phases including business modeling and trans-
formation, solution management, identification, realiza-
tion, specification, deployment/monitoring/management,
and implementation/build/assembly. SOMA is the most
well-known SDM for SOSD due to its good features
of software development process, such as having an
iterative-incremental process model, an architecture-cen-
tric development, and fractal modeling. SDM has been
applied to several industrial projects successfully, so that

it has been designed originally from experiences of devel-
oping hundreds of real service-oriented software systems.

• SUN SOA Repeatable Quality (RQ) [53] This SDM has
been proposed by SUN Microsystems Corporation based
on Rational Unified Process (RUP) [54] and eXtreme
Programming (XP) [55,56] principles that have proven
mature development processes. RQ contains five phases,
namely inception, elaboration, construction, transition,
and conception. These phases can be performed in an
iterative-incremental, architecture and use-case centric
development model. The applicability of RQ suffers from
the lack of supportive documents describing details of
internal process of SDM.

• CBDI-SAE Process [57] This SDM is part of the CBDI-
SAE SOA Reference Framework (RF) introduced by the
CBDI forum. It has four key phases, namely manage,
consume, provide, and enable, which fully cover service-
oriented development process.

• MSOAM [58] MSOAM focuses only on service-oriented
analysis and design phases. Its fully documented pro-
cess prescribes systematic tasks and guidelines to develop
appropriate services at different levels of granularity.
However, it stops at the beginning of the implementation
phase.

• IBM RUP for SOA [59] This iterative SDM has added
service-oriented contents and specific process to RUP. In
this variant of RUP, three phases of identification, speci-
fication, and realization have been added.

• SDM proposed by Papazoglou [51] Papazoglou et al.
have presented a detailed service-oriented SDM that com-
prises eight distinct phases, namely planning, analysis
and design, construction, testing, provisioning, deploy-
ment, execution, and monitoring. Each phase is based on
a number of principles and guidelines required for SOSD.

• IBM SOAD (Service-Oriented Analysis Development)
[60] SOAD’s process has resulted from combining Busi-
ness Process Modeling (BPM), Object-Oriented Analy-
sis and Design (OOAD) and Enterprise Architecture (EA)
practices, techniques, and a number of suggested guide-
lines for identifying and modeling the right services.
SOAD’s process is rather cursory and does not fully cover
service-oriented life cycle so that it would be better called
as a service-oriented analysis and design technique rather
than a holistic SDM. Its applicability is limited, so that
one can only use its specific guidelines during SOSD.

• Service-Oriented Unified Process (SOUP) [61] SOUP is a
hybrid SDM engineered from RUP along with XP for the
development of service-oriented systems. It has six main
phases, namely incept, define, design, construct, deploy,
and support, in which early stages of software develop-
ment look similar to those of RUP. Consequently, it has a
heavyweight process and full documentation. When sys-
tem becomes operational at the user environment, XP

123

www.manaraa.com

Enhancing the OPEN Process Framework 367

principles and practices are applied. These latter phases
form a lighter process during maintenance.

• SDM proposed by Chang and Kim [62] The SDM con-
tains five phases, namely, identifying business processes,
defining unit services, discovering services, developing
services, and composing services.

• Steve Jones’ Service Architectures [63] This SDM is
based on the idea of decomposing business processes
of organizations into business services resulting in busi-
ness service architectures of organizations. It has a
top-down view on organizations to get a set of busi-
ness level services without their complete definition and
implementation.

• Service-Oriented Architecture Framework (SOAF) [64]
This SDM comprises of a set of tasks, techniques, and
guidelines that are grouped in five phases to address ser-
vice identification and to help in deciding on service
granularity while integrating existing legacy systems.
Its phases are information elicitation, service identifica-
tion, service definition, service realization, roadmap, and
planning.

In the next section, we explain how our new method frag-
ments have been extracted from the above-enumerated ser-
vice-oriented SDMs.

5 Methods of identifying reusable method fragments

There are two main alternative approaches for constructing
method fragments [65]: existing method re-engineering and
ad hoc construction. The first approach focuses on identi-
fying and using method fragments from existing SDMs in
a plug-and-play format. However, the ad hoc construction
approach uses real industrial projects to construct method
fragments when there is no explicit defined SDM. In the lat-
ter approach, constructed method fragments are evaluated in
practice; they are considered as reusable method fragments
when quality standards are satisfied. Constructed method
fragments in both approaches can be added to the reposi-
tory of method fragments. Existing method re-engineering
approach is a suitable approach to obtain method fragments
when method fragments can be extracted directly from exist-
ing proven and matured SDMs. If an SDM has a successful
profile in industrial realm, it is reasonable to select it as a can-
didate and use it for constructing method fragments. There-
fore, given the existence of many SDMs in the domain of
SOSD, we thought it is reasonable to use them as our main
source to construct our new method fragments.

By having these enumerated SDMs in mind while con-
structing, new reusable method fragments are re-engineered
from them. To do this, we needed an explicit technique to
identify method fragments from SDMs. It should be noted

that each service-oriented SDM supports different processes.
Interestingly, most SDMs prescribe different tasks with dif-
ferent names and ambiguous and non-standard terminologies
that are in fact similar. They have the same tasks in mind,
but from different viewpoints. If we consider them collec-
tively in an abstract view, we can find out recurring tasks
in their development processes. It is thus important to note
that the multiplicity and similarity of tasks in service-ori-
ented SDMs should be managed in some way during con-
struction of method fragments to derive non-redundant and
pure service-oriented related method fragments. The con-
cept of process pattern can be utilized for this purpose. Pro-
cess patterns are classes of common successful practices and
recurring tasks (or process chunks) in SDMs [66]. In ser-
vice-oriented SDMs, constituent development processes pre-
scribe the same tasks, but with different names too. Given the
lack of any full-fledged technique for extraction of process
patterns from service-oriented SDMs, we have previously
developed a systematic technique for analyzing and min-
ing existing service-oriented development SDMs in terms of
meaningful process patterns (for more detail, see [67]). We
have proposed several strategies to help method engineers
identify process patterns. By focusing on contemporary ser-
vice-oriented SDMs, we extracted a comprehensive set of
process patterns that were refined and gradually completed.
Process patterns were completed and fixed when the analy-
sis of SDMs identified no new process pattern as a candidate
method fragment. Finally, we represented extracted process
patterns in an existing standard repository of method frag-
ments, namely the OPEN metamodel. Figure 3 shows our
steps of extracting method fragments from service-oriented
SDMs.

SOSD only expands existing traditional software devel-
opment tasks and it is mainly considered as an evolution
rather than a revolution. It can however be viewed differ-
ently as an approach to develop software out of method
fragments that have semantic affinity with existing method
fragments in OPF. We should avoid introducing redundant
new method fragments to OPF. In other words, new for-
mulated method fragments should be checked with existing
OPF’s method fragments to see if they have counterparts
in OPF or not. Therefore, before considering a service-ori-
ented method fragment as a new fragment, we checked if
any method fragments existed in the OPF repository cov-
ering the new method fragment or not. If not, the method
fragment was added to the repository in conformance with
the OPEN metamodel standard. Although service-oriented
SDMs cover traditional tasks of software development, we
have discarded their related method fragments in our presen-
tation in this paper for brevity. For instance, service-oriented
SDMs emphasize on business process modeling and business
process optimization and OPF supports this emphasis in the
business optimization phase.

123

www.manaraa.com

368 M. F. Gholami et al.

Fig. 3 Existing method re-engineering approach used to obtain new method fragments

We have identified two types of method fragments that
are specified in detail in the next section. Enhanced Pro-
cessKind method fragments enhance existing ProcessKind
method fragments in OPF with new specific service-oriented
TaskKind fragments. New ProcessKind method fragments
have not been supported by OPF and are new to this frame-
work. Each TaskKind is described in terms of five items as
follows [9]: task name, explanation, producer, work products,
and supportive techniques and relations. Relations specify
relevant predecessor and subsequent of a TaskKind, as well
as Deontic matrix that was described in Sect. 2 to denote the
relation of a TaskKind with other TaskKinds, ProducerKinds,
TechniqueKinds, and WorkProductKinds. Each relation can
be mandatory, recommended, or optional.

6 Proposed Service-oriented method fragments

In this section, we elaborate additional method fragments
in terms of ProcessKinds and TaskKinds that we propose
need to be added to the OPF repository to facilitate service-
oriented SDM construction. Each OPF ProcessKind method
fragment that is enhanced with new TaskKinds is denoted as
an enhanced ProcessKind, while unchanged ProcessKinds
are not described in this paper for brevity. Each TaskKind
method fragment is presented in terms of task name, a sum-
mary of the intent of the task, involved ProducerKind of the
task, relevant WorkProductKinds, and supportive Technique-
Kinds. For simplicity, sometimes in further sections, we have
used the terms process and task for ProcessKind and Task-
Kind, respectively.

6.1 Enhanced ProcessKind: requirements engineering

In this process, the requirements of the target software system
are elicited, specified, and validated by all system stakehold-
ers. This process is very similar to traditional requirements
engineering. In fact, it is covered by the existing requirement
engineering method fragment process in OPF. This is why we
consider it as an enhanced process and hence do not explain
it again. Only its difference with the Specify Service Level
Agreement (SLA) task is described. The task is added to the

requirement engineering process.

TaskKind Name Specify Service Level Agreement (SLA)
Description Quality of Services (QoS) as a subset of non-
functional requirements plays an important role in the ser-
vice-oriented context. It forces service providers to improve
their ability to meet service consumer requirements in a com-
petitive manner with other service providers. Based on the
nature of service orientation, various service providers may
provide the same service to fulfill consumer’s requirements.
They can however be different in the QoS they provide. SLA
grants the service consumer a degree of guarantee that the
service provider complies with and provides acceptable QoS
such as security, availability, performance, and reliability in
the execution environment. In this task, a contract between
service providers and service consumers is established. For
instance, it may be contracted that service should respond to
input requests only in 20 ms or less.
ProducerKinds Service provider, Service consumer,
Requirement engineer
WorkProductKind Document of Service Level Agreement
contract
Supportive Technique
Create SLA contract A consensus contracted between service
consumer and service provider as Service Level Specifica-
tion (SLS) document that specifies a set of typical technical
parameters such as the ones listed below:

• Purpose The intention of creation of the SLA contract.
• Parties The service consumer and provider involved in

the SLA and their responsibilities.
• Validity Time The period of time that SLA should be met.
• Scope The boundaries of and the expectations from SLA.
• Service-Level Objectives Level of service quality that ser-

vice provider and consumer agree on including service
availability, security constraints, reliability, latency, and
recovery time that are mostly noted in measurable and
quantifiable terms.

• Penalties Determining what penalties for failure must be
paid when SLA contract parties violate the agreements.
For example, non-performance may be costly.

123

www.manaraa.com

Enhancing the OPEN Process Framework 369

Table 2 Possible relation values of Specify Service Level Agreement
task

Elements of method fragment Type of element

Specify Service Level Agreement (SLA) Task

Service Consumer Producer

Service Provider Producer

Requirement Engineer Producer

Create SLA Contract Technique

Document of Service Level Agreement Contract Work product

After SLA is contracted, both the service provider and the
service consumer undertake to perform it at runtime in Web
service invocations. Table 2 shows Specify Service Level
Agreement task method fragment. The third column repre-
sents the most recommended values for method fragment.

6.2 Enhanced ProcessKind: environments engineering

This process has many relevant tasks for assessment of the
environment, but it is more critical in the context of SOSD.
Therefore, in this process, the status of existing infrastruc-
ture of enterprise, B2B or systems-of-systems (we refer to
as environments) is assessed to find out candidate services
from existing assets and to evaluate the readiness and exist-
ing capabilities of environment to migrate to service-oriented
solution. Moreover, the reasons for migration to service ori-
entation are justified. This process is enhanced with the Eval-
uate Environment Readiness task.

TaskKind Name Evaluate Environment Readiness
Description This task evaluates the readiness of environment
to migrate to service-oriented solution. This task contains the
following sub-tasks: evaluating the quality of existing codes
and software components, evaluating reusability of valuable
existing business logics of existing legacy software to expose
as Web service, evaluating quality of correctness and integrity
of stored data in databases, reconstructing the architecture
of existing legacy systems, and providing technology infra-
structure and hardware/software resources to support secure,
interoperable, and reliable message protocols between ser-
vices. Even people’s attitude towards changes to their envi-
ronment should be checked to find if it is feasible to build a
service-oriented solution or not.
ProducerKinds Requirement engineer, Database adminis-
trator, Network administrator
WorkProductKind Report of readiness assessment
Supportive Techniques
Create a readiness report Requirement engineer can perform
this task by using well-known criteria of SOA maturity mod-
els, such as those proposed by IBM SOAMM and SIMM
[68,69]. Table 3 shows the possible relation values of Eval-
uate Environment Readiness task.

Table 3 Possible relation values of Evaluate Environment Readiness
task

Elements of method fragment Type of element

Evaluate Environment Readiness Task

Requirement Engineer Producer

Database Administrator Producer

Network Administrator Producer

Create a Readiness Report Technique

Report of Readiness Assessment Work product

6.3 Enhanced New ProcessKind: plan project

The aim of this process is to perform preliminary project
planning such as scheduling, risk management, and resource
planning. This process does not differ from traditional pro-
ject planning except in plan transition. The process includes
one additional task, namely the plan transition task.

TaskKind Name Plan Transition
Description This task is performed to adopt various strate-
gies based on situations of the environment and the state of
existing legacy systems (software components) for transition
to service orientation [70]:

• Replacement Strategy In this strategy, existing legacy
systems are retired entirely by rewriting them from
scratch and constructing a new service-oriented system.
Although this strategy can be expensive and time con-
suming, it can lead to a solution that fits better to the
requirements of the service consumer.

• Wrapping Strategy Some parts of the existing valuable
business logics of legacy systems are wrapped by Web
service technology (e.g., .Net or J2EE), and then exposed
as a service to consumers.

• Redevelopment Strategy This strategy uses the re-engi-
neering approach to add new services to existing legacy
systems.

• Migration Strategy This strategy incorporates both rede-
velopment and wrapping, and aims to develop a new sys-
tem with an improved service-oriented solution.

Having selected the strategies, a transition plan that preserves
functionalities of the original system for migration to service
orientation is developed. Several strategies may be pursued
at the same time based on the situation of existing systems.
The task finishes with a primary estimation effort, cost, and
definition of a road map for migration to service orientation.
It should be noted that the plan can be updated any time.
ProducerKind Service consumer, Service provider, Project
manager

123

www.manaraa.com

370 M. F. Gholami et al.

Table 4 Possible relation values of Plan Transition task

Elements of method fragment Type of element

Plan Transition Task

Service Consumer Producer

Service Provider Producer

Project Manager Producer

Make Transition Plan Technique

Transition Plan Work product

List of Transition Issues Work product

Cost and Effort of Selected Strategies Work product

WorkProductKinds Transition plan, List of transition
issues, Cost and effort of selected strategies
Supportive Techniques
Make Transition Plan The purpose of the proposed tech-
nique is to make a document in which possible alternatives
for migration to service orientation are clarified, discussed,
justified, and critical milestones scheduled and documented.
Table 4 shows the possible relation values of Plan Transition
task.

6.4 New ProcessKind: develop SOA governance model

In this new process, a governance model is established and
then cuts through all development process. Because service
orientation involves various service providers and consumers
that may work in a geographically distributed environment,
a governance model should be established to ensure that the
adoption of service orientation are constantly aligned with
IT initiatives and business needs. Indeed, the process acts as
an umbrella process over software development that is per-
formed continuously. This new process includes only one
task.

TaskKind Name Develop Governance Model for Current
Iteration
Description Service consumers and providers collaborate to
establish chains of responsibility, authority, communication,
and overall scope as well as solution size and funding for
performing the governance model in the current iteration of
the solution. Details of governance model mainly include
a set of supportive high-level policies and rules to achieve
right services that essentially relate to QoS. Executive mech-
anisms are defined to realize the defined policies. Finally,
the task defines as much as possible quantifiable metrics and
indicators to measure and monitor QoS during service usage.
ProducerKind Service consumer, Service provider, Require-
ments engineer
WorkProductKinds Documented (textural description)
governance model, policies, executive mechanisms, quality

Table 5 Possible relation values of Develop Governance Model for the
Current Iteration task

Elements of method fragment Type of element

Develop SOA Governance Model Process

Develop Governance Model Task
for Current Iteration

Service Consumer Producer

Service Provider Producer

Requirements Engineer Producer

Create Governance Model Technique

Documented (Textural Description)
Governance Model

Work product

Policies Work product

Executive Mechanisms Work product

Quality Indicators and Measurement
Metrics

Work product

indicators and measurement metrics.
Supportive Techniques
Create Governance Model There are many techniques that
service consumer and provider can accommodate as a gov-
ernance model to develop service-oriented software success-
fully, such as the one proposed by IBM [71]. Table 5 shows
the possible relation values of Develop Governance Model
for Current Iteration task.

6.5 New ProcessKind: Design Services

The Design Services process is the core of SOSD. When
the main business processes are identified and re-engineered,
useful services that encapsulate business logic capabilities
are defined. This process takes a set of business process mod-
els as input and yields a set of candidate services as output.
The process has four tasks.

TaskKind Name Identify Services
Description In this task, existing business processes and sub-
processes are translated (manually, semi-automatically or
fully automatically) into one or more services to be exposed
to business partners. In other words, valuable services aligned
with IT initiatives are identified. This results in a blueprint
(big picture) of service-oriented environment [63]. Defini-
tions of identified services are more high level and abstract
than the specific details of the service operations that are
specified rigorously later in the Specify Details of Services
task.
ProducerKind Service designer (service modeler) as a
member of service provider
WorkProductKinds Service models, Services interfaces
signatures
Supportive Techniques There are three well-known tech-
niques (typically referred to as strategy) for service identifica-

123

www.manaraa.com

Enhancing the OPEN Process Framework 371

Table 6 Possible relation values of Identify Services task

Elements of method fragment Type of element

Design Services Process

Identify Services Task

Service Designer Producer

Top-Down Technique

Bottom-Up Technique

Meet-In-The Middle Technique

Service Models Work product

Services Interfaces Signatures Work product

tion, namely [52,58]: top-down, bottom-up and meet-in-the
middle (agile). In the top-down technique, a preliminary set
of service interfaces become candidate and grouped into a
logical context and further elaborated in the Specify Details
of the Services task. Specifically, the technique focuses on
identifying candidate services such as business services from
the environment of business process models. The steps of
business processes are transformed to a set of candidate ser-
vices. The bottom-up technique concentrates on wrapping the
underlying existing legacy logics into services that are built
on top of legacy systems to make them easily accessible to
other systems. This technique redirects the environment to
new ways of supporting business needs. The agile technique
proposes a combination of top-down and bottom-up tech-
niques. Services can be modeled and presented by UML 2.0
profile for SOSD [72]. Table 6 shows the possible relation
values of Identify Services task.

TaskKind Name Specify Details of Services
Description The definition of defined services are consoli-
dated with more specific details such as interface specifica-
tion, service dependencies, operation signatures, operation
parameters and parameter types, and input/output messages.
ProducerKind Service designer (service modeler)
WorkKindProducts Service interfaces specifications, Real-
izer components, Service dependencies
Supportive Techniques
Add Specific Details to Services Service designer refines can-
didate services. They design interfaces to provide interoper-
ability between service providers and consumers, input and
output parameters, and error messages for services oper-
ations. Operations of services are detailed via analyzing
collaborations between services. Instantiation of UML 2.0
class, interface, and collaboration stereotypes [72] are used
to represent services specifications. Service designer looks
for potential software components that can realize service
functionalities. Table 7 shows the possible relation values of
Specify Details of Services task.

TaskKind Name Classify Services
Description In this task, various types of identified services

Table 7 Possible relation values of Specify Details of Services task

Elements of method fragment Type of element

Design Services Process

Specify Details of Services Task

Service Designer Producer

Add Specific Details to Service Technique

Service Interfaces Signatures Work product

Software Components Specification Work product

Service Dependency Work product

Table 8 Possible relation values of Classify Services task

Elements of method fragment Type of element

Design Services Process

Classify Services Task

Service Designer Producer

Classify Service Technique

Classified Service Model Work product

are classified based on the usage context. The most well-
known manageable classification for services is typically
hierarchical, in which services are classified based on the
degree of granularity from coarse-grain to fine-grain services,
e.g., mission-aligned business services, enterprise services,
application services and utility (also named infrastructure)
services. The intent of performing the task is to facilitate
clear, precise, and non-overlapping definitions for the wide
range of services in the environment and may be used dur-
ing a service-orientation initiative. The classification assists
service providers (developers) to have more effective com-
munication with service consumers, to understand their state
of existing assets, and to derive a blueprint for the service-
oriented environment.
ProducerKind Service designer
WorkProductsKind Classified service models presented by
UML 2.0 stereotypes for service classification
Supportive Techniques
Classify Service This technique is performed to classify ser-
vices based on their objectives and characteristics, e.g., busi-
ness services, application services, and utility services. The
classification helps service providers and service consumers
to identify which services will be used in the SOA layers
[63]. Table 8 shows the possible relation values of Classify
Services task.

TaskKind Name Evaluate Quality of Designed Services
Description The aim of this task is to increase maintenance,
simplicity, changeability, future enhancements, and reuse of
services. More precisely, the design quality of services is
evaluated in terms of Granularity, Coupling, Cohesion, and

123

www.manaraa.com

372 M. F. Gholami et al.

support of Reusability. The number or scope of functional-
ities of a service is named service granularity and is identified
as a coarse-grain or a fine-grain service [51]. The appropri-
ate level of service granularity has direct effect on service
coupling and cohesion. Evaluating the coupling of services
is performed to minimize dependency (e.g., data dependency
and resource dependency) between services. While busi-
ness processes are realized via orchestration of services, the
dependency between services should be as low as possible to
provide more agility of business processes, while underlying
business processes and rules change more frequently upon
business needs. Low coupling increases service reusability
for future projects. Evaluation of cohesion is performed to
check whether a service exposes a set of relatedness of neces-
sary functionalities or not. It should be noted that a trade-off
is needed while taking into account granularity, coupling,
cohesion, and service reusability.
ProducerKind Service desginer
WorkProductKinds Refined service model
Supportive Techniques There are three specific service-
oriented techniques for performing this task.
Evaluate Service Granularity Service granularity can be
evaluated in different ways such as by the number of software
component interfaces invoked for a given service operation
[64]. When service operations increase, the sizes of messages
and data transfers increase and create higher dependency on
the context. In contrast, fine-grain services increase the num-
ber of message passing between them.
Evaluate Service Coupling The Service designer utilizes
techniques such as the one proposed by Perepletchikov et
al. [73], in which a suite of 17 quantified service-coupling
metrics are used to measure service coupling. Based on the
evaluation results, the service modeler may revise the service
model. Prescriptive guidelines can be incorporated during
service design too [46].
Evaluate Service Cohesion The Service designer can use this
technique to determine if the functionalities of a designed ser-
vice are cohesive, for example if coincidentally and sequen-
tially of operations of Web Services are satisfied or not [74].
Table 9 shows the possible relation values of Evaluate Qual-
ity of Designed Services task.

6.6 Enhanced ProcessKind: Service-Oriented Architecture
Engineering

This process is supported by existing Architecture Engineer-
ing process in the OPF repository that we renamed it to
Service-Oriented Architecture Engineering to promote it to
SOA. The main enhancement relates to instantiation of stack-
based service-oriented reference architecture (SOA reference
model) [52] in which services are organized into different
layers. The layered architecture enables complexity manage-
ment and facilitates the decision to where to place services

Table 9 Possible relation values of Evaluate Quality of Designed Ser-
vices task

Elements of method fragment Type of element

Design Services Process

Evaluate Quality of Designed Services Task

Service Designer Producer

Evaluate Service Granularity Technique

Evaluate Service Coupling Technique

Evaluate Service Cohesion Technique

Refined Service Model Work product

and how to provide support for SOA-specific QoS issues.
QoS is realized by utilizing well-known architecture strate-
gies and tactics such as the ones proposed in [75].

6.7 Enhanced ProcessKind: develop services

This process enhances the Implementation process of the
OPF repository. The real required services such as business
services, enterprise services, application services and utility
are developed in various manners. The process includes three
tasks as follows.

TaskKind Name Implement and Test Necessary Services
Description If no suitable required Web service is found in
OPF or no exact match with the requirements is found, an
alternative implementation must be developed from scratch.
Services are implemented and tested by service provider
(development team). Meanwhile, specification of the imple-
mented service as a Web service is expressed in Web Service
Description Language (WSDL), wherein public available
operations are exposed in a way that service consumers can
invoke them. Because Web Services can be developed sep-
arately by a geographically distributed development team,
all Web Services as part of a distributed system should be
tested independently and integrated with other Web Services
or systems involved. Test performed by service provider and
service consumer. Service provider can provide a number of
test cases for service consumer to reuse.
ProducerKind Service developer, Service tester
WorkProductKinds Executable Web Services, Services
WSDLs and WS-Policy
Supportive Technique
Implement Services Service developer uses this technique.
Existing OO analysis and design techniques such as ana-
lyzing and designing classes, CRC card modeling and clas-
sifying relevant classes into cohesive software components
are used to implement services. From an implementation
viewpoint, a Web service realizes a service comprising a
number of software components. Specifications of software
components provide the basis for the design and implemen-

123

www.manaraa.com

Enhancing the OPEN Process Framework 373

Table 10 Possible relation values of Implement and Test Necessary
Services task

Elements of method fragment Type of element

Implement and Test Necessary Services Task

Service Developer Producer

Service Tester Producer

Implement Services Technique

Perform WSDL Testing Technique

Executable Web Services Work product

Services WSDLs and WS-Policy Work product

tation of Web Services, i.e., service interfaces. OPEN has a
set of method fragments that allows for incorporating CBD
approach in the software development process. The Imple-
ment Services task forces service providers to accommodate
existing tasks of OPF that are specified in the Implementa-
tion process.
Perform WSDL Testing In addition to traditional testing tech-
niques, Service tester can use the WSDL testing technique.
Web Services have WSDL as the only available interface
at testing time. WSDL metadata files are XML documents
containing information about Web service’s operations and
required QoSs. Test case generator tools use WSDL files to
generate test cases automatically. Test cases act as SOAP
messages sent to Web Services as well as to service consum-
ers. All Web service operations include various inputs/out-
puts with different data types. Confidentiality and integrity
of SOAP messages during test should be taken into account
too. Table 10 shows the possible relation values of Implement
and Test Necessary Services task.

TaskKind Name Implement Necessary Wrappers
Description This task concentrates on the software compo-
nents comprising the interfaces of existing legacy systems.
Based on the work products of the Evaluate Environment
Readiness task, valuable business logics of one or more exist-
ing legacy systems that provide desired functionalities are
extracted and exposed through universal standard Web ser-
vice technologies such as .Net or J2EE. Wrapping provides
new broad accessibility Web service interfaces to existing
legacy software components. Wrapping existing software
components interfaces as Web Services is justifiable when
the development of service-oriented systems from scratch is
expensive, risky, and time consuming.
ProducerKind Service developer
WorkProductKinds Executable Web Services, Services
WSDLs
Supportive Techniques
Implement Wrappers There are several step-by-step tech-
niques including manual [76,77], semi-automatically [78,
79], or fully automatically [80] techniques that service devel-
opers can use to wrap individual functionalities in legacy

Table 11 Possible relation values of Implement Necessary Wrappers
task

Elements of method fragment Type of element

Implement Necessary Wrappers Task

Service Developer Producer

Service Tester Producer

Implement Wrapper Technique

Executable Web Services Work product

Services WSDLs Work product

source codes such as Web Services. Table 11 shows the pos-
sible relation values of Implement Necessary Wrappers task.

TaskKind Name Develop Necessary Composite Web Ser-
vices
Description This task is composed of a number of prepared
fine-grain (also called atomic) Web Services and other soft-
ware components related to the underlying business pro-
cesses that form a more coarse-grain Web service called a
Composite Web Service that is assumed to maximize busi-
ness value. In fact, service consumers synthesize Compos-
ite Web Services to realize ultra large-scale software system
in terms of systems-of-systems or supply chain management
via composing a dozen of heterogeneous distributed indepen-
dent Web Services. Definition of business service is adopted
from Business Process Modeling Language (BPML) [81]
and IBM’s WSFL [82] wherein the invocation order of Web
Services—orchestration or choreography—and the sequenc-
ing of message passing and bindings between services are
defined to form the flow of business services. It is worth not-
ing that the composition of appropriate Web Services with
guaranteed QoS should be considered prior to the construc-
tion of a service-oriented system. Therefore, analysis of Web
Service composition alternatives to select the best composi-
tion must be done. Composite Web Services are executed
later by Business Process Execution Language for Web Ser-
vices (BPEL4WS) [83], which is a standard engine for busi-
ness process execution. The task is conducted using manual,
semi-automated, or automated composition techniques [84].
ProducerKind Service consumer, Business process engi-
neer
WorkProductKinds Composite services as business process
(BPEL processes)
Supportive Techniques
Compose Web Service There are several supportive tech-
niques for this task [85]. A service consumer takes a num-
ber of fine-grain Web Services to configure a given business
process model. Then he/she evaluates how best the com-
posed Web Services meet the desired functionalities and QoS
parameters to select the best composition. Service compo-
sition task becomes more complex as the number of pro-
vided Web Services (e.g., available Web Services on the

123

www.manaraa.com

374 M. F. Gholami et al.

Table 12 Possible relation values of Develop Necessary Composite
Web Services task

Elements of method fragment Type of element

Develop Necessary Composite Web Services Task

Service Consumer Producer

Business Process Engineer Producer

Compose Web Services Technique

Composite Services as Business Process Work product

Web) increases. Therefore, automated or semi-automated
tools to help service consumers in this hard task are criti-
cally required. Table 12 shows the possible relation values of
Develop Necessary Composite Web Services task.

6.8 Enhanced ProcessKind: Reuse Engineering

We have only enhanced this existing OPF process with one
service-oriented specific task.

TaskKind Name Discover Necessary Web Services
Description The aim of this task is to help search and select
from existing Web Services, those that match best with the
service consumers’ requirements such as QoS and function-
alities. The result of this task is a list of retrieved candidate
Web Services. Given that Web Services can be developed
by various service providers, services should be certified
to ensure that selected services satisfy the required quality
of concerns (SLA). It is possible that many Web Services
exactly match the particular requirements. Therefore, the ser-
vice consumer must evaluate them all to select the best ones.
For paid services, a usage-based billing model for charging
of services is contracted between service provider and ser-
vice consumer. Typically, the discovery task is supported by
automatic Web service discovery engines.
ProducerKind Service consumer
WorkProductKinds Executable Web Services
Supportive Techniques
Search Web Services Service consumers can use generic
search engines such as Google to find WSDL documents in
the Web or running SOAP APIs that allow performing que-
ries on UDDI directories. Tools can assist service consumers
to locate services that accurately satisfy the required QoSs.
Table 13 shows the possible relation values of Discover Nec-
essary Web Services task.

6.9 Enhanced ProcessKind: enable service-oriented
solution

This process is mainly supported by Deployment process in
OPF. The Service-Oriented Solution enhances this process
by two service-oriented specific tasks. In this process, Web

Table 13 Possible relation values of Discover Necessary Web Services
task

Elements of method fragment Type of element

Discover Necessary Web Services Task

Service Consumer Producer

Search Web Services Technique

Executable Web Services Work Product

Services are deployed in an operational environment. More-
over, defects and missing requirements are discovered in this
process. In some cases, it is difficult to determine a time for
deployment of Web Services as building blocks of the system
when a service-oriented system can be fully developed via
existing Web Services that have already been provided and
published by various service providers.

TaskKind Name Publish Web Services
DescriptionWeb Services are hosted and advertised by ser-
vice providers and published to an accessible common regis-
try such as a Universal Description Discovery and Integration
(UDDI) server (http://www.uddi.org/). The major informa-
tion in addition to what is provided for a typical Web Ser-
vice includes Web Service’s operations signatures and QoS
values such as the cost of usage, availability, and security
issues. Service consumer can discover the required Web Ser-
vices through universal protocols such as SOAP messages.
In fact, service providers advertise their Web Services at a
global marketplace on the Web.
ProducerKind Service installer
WorkProductKinds Deployed and published services
Supportive Techniques
Import Web Services into a Common Web Service Repository
The service installer takes tested Web Services, generates a
Web Service description document like WSDL for each one,
and publishes it to a common repository such as in a UDDI
where service consumers can find Web Services. Table 14
shows the possible relation values of Publish Web Services
task.

TaskKind Name Perform Test in Large
Description This task tests orchestrated or choreographed

Table 14 Possible relation values of Publish Web Services task

Elements of method fragment Type of element

Publish Web Services Task

Service Installer Producer

Import Web Services into the Common Technique
Web Service Repository

Deployed and Published Services Work Product

123

http://www.uddi.org/

www.manaraa.com

Enhancing the OPEN Process Framework 375

Table 15 Possible relation values of Perform Test in Large task

Elements of method fragment Type of element

Perform Test in Large Task

Orchestrator/Choreographer Tester Producer

Perform Orchestration/Choreography Testing Technique

Test Cases Work Product

Results of Running Test Cases Work Product

Web Services to see if the composition of Web Services that
builds a distributed system actually meets the business accep-
tance criteria for functional requirements and SLA for non-
functional concerns. Based on the nature of SOSD, such a
test typically involves more than one software development
team (service provider) and business partner (service con-
sumer), such as when a composite Web Service realizes a
business-to-business (B2B) business process.
ProducerKind Orchestrator/Choreographer Tester
WorkProductKinds Test cases, Result of running test cases
Supportive Techniques
Perform Orchestration/Choreography Testing One way to
perform this task is to define certain business process sce-
narios as test cases. The results of performing the tests are
compared with expected functionalities, SLA contracts, spe-
cially predefined policies, and quality criteria in the SOA
governance criteria. Table 15 shows the possible relation val-
ues of Perform Test in Large task.

6.10 Enhanced ProcessKind: maintenance

After Web Services are fully deployed in an operational envi-
ronment, this process evaluates QoS of all participating Web
Services that make up the distributed system, against pre-
defined SLA contract and SOA governance model continu-
ously. This process includes one main task.

TaskKind Name Monitor Operational Web Services
Description The aim of this task is to indicate service degra-
dation, noncompliance with service-level offerings, and ser-
vice availability levels before service failure actually occur.
To do this, service consumers gather and log data during
Web Services usage. They then measure and interpret Web
Services against predefined metrics in Develop SOA Gover-
nance model and the SLA contract. For Web Services having
usage-based billing models as well as those consensued in
the SLA contract, service proivders generate billing reports
to service consumers to pay them.
ProducerKind Service consumer, Service provider
WorkProductKinds Statically generated reports of QoS,
Service metering, Billing report and Defect report.
Supportive Techniques

Table 16 Possible relation values of Monitor Operational Web Services
task

Elements of method fragment Type of element

Monitor Operational Web Services Task

Service Consumer Producer

Service Provider Producer

Monitor QoS of Web Services Technique

Statically Reports of QoS Work Product

Service Metering Work Product

Billing Report and Defect Report Work Product

Monitor QoS of Web Services Service consumers log and
analyze Web Service invocations, for instance the number of
Web Service operation invocations or the number of authen-
tication failures, to detect violations from promised QoS
parameters such as response time, throughput, and availabil-
ity. Historical information of Web Services’ QoSs are ana-
lyzed. Based on the generated reports, business processes
may need management decisions to accommodate changes
to business processes (as composite Web Services) such as
Web Service replacement with another one for continuous
QoS improvement (See the Compose Web Service Dynam-
ically task). Table 16 shows the possible relation values of
Monitor Operational Web Services task.

TaskKind Name Compose Web Services Dynamically
Description This task allows utilizing various Web Services
on the Web on demand without enforcing any Web Ser-
vice composition or deployment in advance. This way, ser-
vice composition that is usually performed at design time
can be done dynamically at runtime too. Consequently, this
task blurs the distinction between tasks at design time and
runtime. Malfunctioning of Web Services at runtime in the
system can be sensed and rectified dynamically by probing
for new Web Services and replacing them with new ones on
the fly.
ProducerKind Service consumer
WorkProductKinds New Discovered Web Services
Supportive Techniques
Reconfigure Composite Web Services Service consumers
reconfigure composite Web Services in which degraded Web
Services have been detected and replaced by new ones. Typ-
ically, dynamic Web Service composition is performed auto-
matically. Table 17 shows the possible relation values of
Compose Web Service Dynamically task.

Relation among method fragments Although method frag-
ments are stored independently in the repository, the con-
straints on them can be specified via Constraint superclass
of OPEN [14,15]. Constraint superclass provides a linkage
as well as a predecessor and a subsequent one for method
fragments. There are two subtypes of Pre-Condition and

123

www.manaraa.com

376 M. F. Gholami et al.

Table 17 Possible relation values of Compose Web Service Dynami-
cally task

Elements of method fragment Type of element

Compose Web Services Dynamically Task

Service Consumer Producer

Reconfigure Composite Web Services Producer

New Discovered Web Services Technique

Post-Condition for this purpose that we have used. The con-
straints allow us to clarify imperative constraints on method
fragments. Figure 4 shows possible predecessor and subse-
quent constraints as pre-conditions and post-conditions of
the use of task method fragments as recommended in OPEN.
The directions of arrows show dependency between tasks
For instance, Identify Services task should be completed for
identifying a list of required services before performing the
Discover Necessary Web Services for obtaining executable
Web Services. It is obvious that all constraints are main-
tained as Pre-Condition and Post-Condition fields of the task
method fragments.

7 Position of new method fragments in OPEN

Our proposed method fragments represent necessary service-
oriented method fragments that should be added to the OPF
repository in support of service-oriented SDM construction

using OPF method fragments. To construct a project-specific
service-oriented SDM, required process should be selected
first. Then, task method fragments should be selected to
complete the internal details of the process of method frag-
ments. For each task method fragment, relevant producer(s),
work product(s), and supportive technique(s) should be deter-
mined.

Table 18 shows the position of the new service-oriented
method fragments in the OPEN process model as an enhance-
ment to the OPF repository in order to incorporate service-
oriented method fragments. The original process method
fragments (first column) of OPEN with ten processes form
the OPEN development process model. New process and task
method fragments enhance OPEN in portions that service-
oriented support is needed. The two new processes of method
fragments are Design Services and Develop Governance.
Each of these new processes has new task method frag-
ments themselves. The original processes of method frag-
ments are extended with new service-oriented task method
fragments (second column). For instance, the Requirements
Engineering process is enhanced with Specify SLA task
method fragment. For brevity, task method fragments orig-
inally existing in OPF are not shown here (for details see
[14,15]). The third column shows the Producer that should
be employed to produce necessary Work Products (forth
column). Tasks are performed to complete the processes.
Supportive techniques should be used to realize tasks. For
instance, the Design Services process has four associated
tasks.

Fig. 4 Relation among method fragments

123

www.manaraa.com

Enhancing the OPEN Process Framework 377

Table 18 New service-oriented specific method fragments incorporated into OPEN

ProcessKind TaskKind TechniqueKind WorkProductKind ProducerKind

Requirements Engineering Specify SLA Create SLA Contract Document of Service
Level Agreement
Contract

Service Provider, Service
Consumer, Requirement
Engineer

Environments Engineering Evaluate Environment
Readiness

Evaluate Environment
with SOA Maturity
Model Criteria

Report of Readiness
Assessment

Requirement Engineer,
Database Administrator,
Network Administrator

Develop Governance Develop Governance for
Current Iteration

Create Governance Model Documented Governance
Model, Policies,
Executive Mechanisms,
Quality Indicators and
Measurement Metrics

Service Consumer,
Service Provider,
Requirements Engineer

Reuse Engineering Discover Necessary Web
Services

Search Web Services Executable Web Services Service Consumer

Design Services Identify Services Top-Down Analysis
Bottom-Up Analysis
Meet-In-the Middle
Analysis

Service Models
Service Interface
Signatures

Service Designer

Specify Details of
Services

Add Specific Details to the
Service

Service Interface
Signatures
Realizer Components
Service Dependency

Service Designer

Classify Services Classify Service Classified Service Model Service Designer

Evaluate Quality of
Designed Services

Evaluate Service
Granularity

Evaluate Service Coupling
Evaluate Service Cohesion

Refined Service Model Service designer

Implementation Implement and Test
Necessary Services

Implement Services
Perform WSDL Testing

Executable Web Services Service Developer
Service Tester

Implement Necessary
Wrappers

Implement Wrappers Services WSDLs and
WS-Policy

Service Developer

Develop Necessary
Composite Web Services

Compose Web Service Executable Web Services
Services WSDLs
Composite Services as

Business Process

Service Consumer
Business Process Engineer

Deployment Publish Web Services Import Web Services into
the common Web
Service Repository

Deployed and Published
Services

Service Installer

Perform Test in Large Perform Orchestration or
Choreography Testing

Test cases
Result of running Test

Cases

Orchestrator/Choreogra-
pher Tester

Maintenance Monitor Operational Web
Services

Monitor the QoS of Web
Services

Static Reports of QoS
Service Metering
Billing Report and Defect

Report

Service Consumer
Service Provider
Service Consumer

Compose Web Service
Dynamically

Reconfigure Composite
Web Services

New Discovered Web
Services

Service Consumer

Management Plan Transition Make Transition Plan Transition Plan
List of Migration Issues
Cost and Effort of

Selected Strategies

Service Consumer,
Service Provider, Project
Manager

8 Evaluation

We presented a set of reusable service-oriented method
fragments to facilitate the construction of situational SDM
methods based on situational factors of the project at hand.
Whenever an organization aims to construct a service-
oriented SDM, it can construct its SDM based on our

proposed set. The question is though how much valid and
correct are these fragments? We thus need to verify and val-
idate (V&V) our proposed method fragments. To do this,
we need to state clearly, what we mean by V&V of a set of
method fragments. Unfortunately, there is no pertinent and
approved definition or analysis criteria to verify and validate
a set of method fragments to be added to the OPF repository.

123

www.manaraa.com

378 M. F. Gholami et al.

Henderson-Sellers and Gonzalez have conducted a theoret-
ical work on the granularity and the size of the resulting
method fragments [88]. They have argued that granularity
affects reusability of method fragments and thus method frag-
ments should be atomic rather than being coarse grained.
However, their work is in progress and not finalized yet.
Therefore, we could not find a mature metric or evaluation
criteria to analyze our method fragments in detail. Further-
more, most existing evaluation criteria, which often use qual-
itative questionnaires, have focused on evaluating the quality
of the constructed situation SDM rather than the method frag-
ments themselves [19].

For the above reasons, we decided to use the abstract defi-
nition of V&V about software artifacts proposed by Bohem’s
[89] and Pressman [90]:

1. Abstract Verification Has the artifact been constructed in
the right way?

2. Abstract Validation Has the right artifact been con-
structed?

Using these definitions, we made an analogy between the
terminologies of V&V in the realms of software engineer-
ing and SME, specifically method fragments. To be more
specific, we have concretized V&V for SME as follows:

1. Concrete Verification Has the proposed method frag-
ments been constructed/identified in a right manner in
line with the OPEN/OPF and SME objectives?

2. Concrete Validation Has the right method fragments been
developed to facilitate the construction of various SDMs?

We argue that we have defined the proposed method frag-
ments in the right manner (i.e., are verified) based on the
first definition. This is because we have used the method of
re-engineering approach proposed by Ralyté [7] and system-
atically reviewed the main sources and published literature
on OPEN metamodel [9,14], OPF repository, and construc-
tion of method fragments [19]. We then extracted the recur-
ring fragments from 11 prominent service-oriented SDMs to
ensure the resulting method fragments were [16] non-redun-
dant, without overlapping, and compatible with the struc-
ture of the latest revision of OPEN’s metamodel, namely the
ISO/IEC 24744 [25]. We made sure to represent the proposed
method fragments in the same structure as that of ISO/IEC
24744 to make them consistent with the method fragments
already stored in OPF and thus easily connectable to preex-
isting method fragments.

To validate that we have developed the right method frag-
ments, we use two criteria presented in [91–94], namely
usability and completeness. The usability criterion mea-
sures the range of situational SDMs that can be constructed
from the proposed method fragments based on the pro-

jects’ requirements. The completeness criterion measures
how fully the proposed method fragments cover any specific
domain of software development. In the following two sec-
tions A and B, we separately argue that the proposed method
fragments satisfy these two criteria in practice.

8.1 Completeness

We use Domain Fragments and Domain Coverage presented
by Han [94] to validate the completeness of our proposed
method fragments. Domain coverage measures the adequacy
of a set of proposed method fragments in covering a specific
domain of software development, while domain fragments
are a subset of a domain and propitious domain fragments
are those that more fully cover that domain. We thus need
to define a domain for validating the completeness of our
proposed method fragments first. Considering the Papazog-
lou’s recommendation [2] that argues in favor of service-
oriented SDMs as a suitable representative domain for ser-
vice-oriented paradigm or service-oriented software engi-
neering/computing, service-oriented SDMs constitute the
domain of our work. Fortunately, we had in fact selected this
domain before to derive the proposed method fragments.

As stated in Sect. 4 before, we had selected a number
of prominent service-oriented SDMs based on their appli-
cations in real projects, their maturity levels, their citation
rates, accessibility to their resources, and quality of their doc-
umentations [49]. The following 11 service-oriented SDMs
were chosen: IBM SOMA, SUN SOA Repeatable Quality
(RQ), CBDI-SAE Process, MSOAM, IBM RUP for SOA,
SDM proposed by Papazoglou, IBM SOAD (Service-Ori-
ented Analysis Development), Service-Oriented Unified Pro-
cess (SOUP), SDM proposed by Chang and Kim, Steve
Jones’ Service Architectures, Service-Oriented Architecture
Framework (SOAF). Therefore, all these 11 SDMs consti-
tute the domain of our work and the set of proposed method
fragments constitute the domain fragments. We should thus
show that the proposed method fragments (i.e., domain frag-
ments) cover these 11 service-oriented SDMs (i.e., domain)
adequately. We define two general equations below (Eqs. 1,
2) to measure the adequacy of this coverage, wherein

• Task refers to a substantial task in an SDM. It is a bit
inductive and tentative to figure out which elements in
an SDM are tasks. Some examples include Requirement
elicitation, Design prototypes, Evaluate software archi-
tecture, and Implement code.

• Number of Tasks (NT) represents the total number of tasks
in an SDM.

• Method Fragment (MF) represents a typical method frag-
ment.

123

www.manaraa.com

Enhancing the OPEN Process Framework 379

• Sum of Method Fragments (SMF) represents the total
number of service-oriented task method fragments, which
is 16 in our case here in this paper.

• N represents the number of SDMs, which is 11 in our
case here.

• Method Coverage (MC) represents the degree of cover-
age of a service-oriented SDM (a SDM is a subset of
domain) by a set of service-oriented method fragments
(domain fragments) that is calculated by Eq. 1.

• Domain Coverage (DC) represents the degree of cover-
age of the service-oriented SDMs (domain) by service-
oriented method fragments (domain fragments) that is
calculated by Eq. 2.

MC =
∑SMF

i=1 MFi
∑NT

i=1 Taski

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

> 1

= 1

< 1

(1)

DC =
{

1 ∀ MC ∈ domain ⇒ MC = 1
0 else

(2)

An MC > 1 means that the proposed service-oriented
method fragments not only cover an SDM, but that they pro-
vide more tasks than required by the SDM. In other words,
the SDM can be constructed by reusing the proposed method
fragments. An MC = 1 implies a one-to-one relation between
method fragments and domain. An MC < 1 means that
method fragments are not adequate to cover the SDM fully
and that they should be enriched with more method frag-
ments. DC is one when method fragments cover all SDMs,
and is zero when they fall short of covering all SDMs.

Table 19 shows the calculated MC values for each SDM
by the proposed method fragments, using Eq. 1. It should be
noted that the calculation of the number of tasks in SDMs was
difficult because tasks were represented mostly in a narrative
form rather than in a formal format. We thus used the pro-
cess-centered textual template proposed by Ramsin [95] to
categorize tasks and facilitate their enumerations. Therefore,
the second column of Table 19 shows the list of decomposed
tasks of each SDM using this process-centered template. For
brevity, we did not consider traditional tasks of SDMs in this
template. For example, in the IBM RUP for SOA, there were
three main service-oriented tasks. The third column demon-
strates the correspondence between one or more proposed
service-oriented task method fragments to each task of each
SDM. In other words, the second and third columns together
show a one-to-one mapping between the tasks of SDMs and
the proposed set of method fragments.

As shown in Table 19, the MC values for all 11 SDMs
were lower than 1. For example, given our 16 proposed
method fragments (SSMF = 16), IBM SOAD with three tasks

(NA = 3) had an MC equal to 3/16 (0.1870) indicating that
the proposed method fragments not only cover this SDM,
but provide more support than it requires. In other words, a
method engineer can construct IBM SOAD with the proposed
task method fragments. The same is true for other SDMs too.

Given that the MC values for all 11 SDMs were lower
than 1, the DC value is 1 indicating that the proposed task
method fragments cover all of SDMs, or that all these SDMs
can be constructed using the proposed method fragments. We
have thus shown that the proposed method fragments (i.e.,
domain fragments) cover these 11 service-oriented SDMs
(i.e., domain) adequately, or better said are complete only in
this context.

8.1.1 Gap analysis

As far as the completeness of the proposed method fragments
derived from our study of the 11 prominent service-oriented
SDMs is concerned, it should be noted that the proposed
set of fragments, as a core for the construction of service-
oriented SDMs, may be enhanced further and evolved by the
introduction and consideration of any new service-oriented
SDMs. The analysis of new service-oriented SDMs can lead
to the addition of a new assortment of method fragments too.
However, as more and more new SDMs are considered, we
expect that the incremental additions to the proposed method
fragments diminish marginally. The same argument applies
to any other existing service-oriented SDM we had not con-
sidered in our research such as the Multi-View SOAD pro-
posed by Kenzi et al. [96]. We only claim and show that the
proposed method fragments are complete with respect to the
11 selected prominent service-oriented SDMs.

8.2 Usability

Having shown the completeness of the proposed method frag-
ments in Sect. VII-A, we must now show that the proposed
fragments are usable in the construction of situational SDMs
based on situational factors of the project at hand. These two
properties together validate our proposed method fragments.

A real empirical assessment is required to justify the
usability property of the proposed fragments. However, we
have two reservations. Firstly, “Software Process Assess-
ment” is still considered as a challenging task in the SME
literature [19,39] and few real case studies can be found
to indicate industrial usages [86]. Secondly, performing a
wide-range of empirical experiments on the usability of
the proposed service-oriented method fragments in several
industrial projects and in different software development
organizational circumstances would seem to be an ideal way
to evaluate our work. However, adopting such an evaluation
technique requires considerable amount of time, effort, and
resourses to monitor, gather, and measure data continuously

123

www.manaraa.com

380 M. F. Gholami et al.

Table 19 Coverage of eleven service-oriented SDMs by the proposed service-oriented method fragments

SDM Task Corresponding task method fragment(s)

IBM SOAD 1. Service Identification Identify Services

2. Service Classification Classify Services

3. Service Modeling and Documentation Specify Detail of Services

NA = 3; SSMF = 16; MC = 3/16 (0.187)

IBM SOMA 2008 1. Business Modeling and Transformation Business Requirements Engineering (from
Requirements Engineering process method
fragment in OPF)

2. Solution Management All tasks in Project management Process method
fragments in OPF

3. Identification Identify Services

4. Specification Specify Detail of Services

5. Realization Candidate Component Evaluation and

Candidate Component Solution Identification in
OPF (from Component Product Acquisition
process method fragment in OPF repository)

6. Implementation Implement and Test Necessary Services

Implement Necessary Wrappers

7. Deployment, Monitoring, and Management Publish Web Services

Monitor Operational Web Services

Compose Web Services Dynamically

NA = 7; SSMF = 16; MC = 7/16 (0.437)

CBDI-SAE Process 1. Manage Evaluate Environment Readiness

Develop Governance Model for Current Iteration

2. Consume Business Requirements Engineering (from
Requirements Engineering process method
fragment in OPF)

3. Provide Plan Transition

Service-Oriented Architecture Engineering

Implement and Test Necessary Services

Implement Necessary Wrappers

4. Enable Publish Web Services

Monitor Operational Web Services

Compose Web Services Dynamically

NA = 4; SSMF = 16; MC = 4/16 (0.25)

SOUP 1. Incept Evaluate Environment Readiness and Business
Requirements Engineering (from Requirements
Engineering process method fragment in OPF)

2. Define Plan Transition

Identify Services

All tasks in Project management Process method
fragments in OPF

3. Design Specify Detail of Services

4. Construct Implement and Test Necessary Services, Implement
Necessary Wrappers

5. Deploy Publish Web Services

6. Support Monitor Operational Web Services

SMA = 6; SSMF = 16; MC = 6/16 (0.375)

MSOAM 1. Service-Oriented Analysis Evaluate Environment Readiness

Business Requirements Engineering (from
Requirements Engineering process method
fragment in OPF)

123

www.manaraa.com

Enhancing the OPEN Process Framework 381

Table 19 continued

SDM Task Corresponding task method fragment(s)

2. Service-Oriented Design Identify Services

Service-Oriented Architecture Engineering

3. Service Development Implement and Test Necessary Services

Implement Necessary Wrappers

4. Service Testing Implement and Test Necessary Services

Implement Necessary Wrappers

5. Service Deployment Publish Web Services

6. Service Administration Monitor Operational Web Services

Compose Web Services Dynamically

NA = 6; SMF = 16; MC = 6/16 (0.375)

IBM RUP for SOA 1. Service Identification Identify Services

2. Service Specification Specify Detail of Services

3. Service Realization Candidate Component Evaluation (OPF)

Candidate Component Solution Identification in
OPF (from Component Product Acquisition
process method fragment in OPF repository)

NA = 3; SMF = 16; MC = 3/16 (0.187)

SUN SOA RQ 1. Inception Evaluate Environment Readiness

Business Requirements Engineering (from
Requirements Engineering process method
fragment in OPF)

2. Elaboration Evaluate Environment Readiness

Service-Oriented Architecture Engineering

Business Requirements Engineering (from
Requirements Engineering process method
fragment in OPF)

3. Construct Implement and Test Necessary Services

Implement Necessary Wrappers

4. Transition Publish Web Services

5. Maintenance Monitor Operational Web Services

Compose Web Services Dynamically

NA = 5; SMF = 16; MC = 5/16 (0.312)

SOAF 1. Information Elicitation Business Requirements Engineering (from
Requirements Engineering process method
fragment in OPF)

2. Service Identification Identify Services

3. Service Definition Specify Detail of Services

4. Service Realization Candidate Component Evaluation

Candidate Component Solution Identification in
OPF (from Component Product Acquisition
process method fragment in OPF repository)

5. Road Map and Planning Develop Governance Model for Current Iteration

Plan Transition

NA = 5; SMF = 16; MC = 5/16 (0.312)

Steve Jones’ Service Architectures 1. Initiate Plan Transition

All tasks in Project management process method
fragments in OPF

Business Requirements Engineering (from
Requirements Engineering process method
fragment in OPF)

123

www.manaraa.com

382 M. F. Gholami et al.

Table 19 continued

SDM Task Corresponding task method fragment(s)

2. Create Big Picture Evaluate Environment Readiness

3. Create Architecture Service-Oriented Architecture Engineering

NA = 3; SMF = 16; MC = 3/16 (0.187)

Papazoglou 1. Planning Plan Transition

All tasks in Project management Process method
fragments in OPF

2. Analysis and Design Evaluate Environment Readiness

Identify Services

Specify Detail of Services

3. Construction and Testing Implement and Test Necessary Services

Implement Necessary Wrappers

4. Provisioning Develop Necessary Composite Web Services

Discover Necessary Web Services

5. Deployment Publish Web Services

6. Execution and Monitoring Monitor Operational Web Services

Compose Web Services Dynamically

NA = 6; SMF = 16; MC = 6/16 (0.375)

SDM proposed by Chang and Kim 1. Identifying business processes Evaluate Environment Readiness

Business Requirements Engineering (from
Requirements Engineering process method
fragment in OPF)

2. Defining Unit services Identify Services

Specify Detail of Services

3. Discovering Services Discover Necessary Web Services

4. Developing Services Publish Web Services

5. Composing Services Develop Necessary Composite Web Services

NA = 5; SMF = 16; MC = 5/16 (0.312)

during SDM construction. This is not feasible given the
time constraint of our research and the unavailability of real
projects. Consequently, we expect that the real validity of
our proposed fragments should be appraised in the long
term. However, our earlier research in this area [67] sug-
gested strongly that original service-oriented SDMs that have
been utilized for identifying method fragments have already
attested the suitability and applicability of tasks or, better
stated, method fragments because they had been derived
from recurrent pre-examined best practices. Therefore, we
can assume that our proposed method fragments have been
validated too implicitly.

However, to provide a more concrete measurement and
explicit evidence on the usability of the proposed method
fragments, we conducted two case studies. By usability in the
context of SME, we mean how much do method fragments
satisfy the requirements of an SDM [98]. We define a simple
intuitive metric wherein the satisfaction of the requirements
of an SDM is defined as the percentage of the number of
requirements that are met by method fragments divided by
the number of all requirements as shown in Eq. 3.

Usability(%) = M

R
× 100 (3)

In Eq. 3, M represents the number of requirements met,
R represents the total number of SDM’s requirements, and
Usability represents the percentage of the usability of method
fragments. High Usability means that method fragments have
met most of the SDM’s requirements. A 100% Usability
means that method fragments have met all of SDM’s require-
ments. We can thus measure the usability of the proposed
method fragments in each case study (i.e., real project) using
this criterion.

The two case studies presented here demonstrate how the
proposed method fragments were used in the construction of
a specific service-oriented SDM based on the enhanced OPF
repository. In both case studies, a method engineer first elic-
ited SDM requirements and then designed an SDM by select-
ing relevant method fragments from the repository. Both case
studies were focused on the process of selecting method frag-
ments rather than performing all steps involved in the con-
struction of an SDM.

123

www.manaraa.com

Enhancing the OPEN Process Framework 383

8.3 First case study

8.3.1 Scenario

The first case study is the development of a service-oriented
system for providing some residential services to employ-
ees of an NGO [87]. The NGO has offices in 30 provinces
with a total number of 14,000 employees. Based on the busi-
ness process viewpoint, the system should provide online
services for booking rooms and accepting payments for the
expenses. After deploying the system, any employee can send
his/her request to book a room in one of the hotels located
in a specific province and track his/her request and pay the
expenses by online services provided by third party payment
services. Having received the requests, the priorities are auto-
matically determined by the system and a room is assigned
to the employee. The employee is informed by the system
through e-mail and SMS services that confirm the reserva-
tion process.

8.3.2 SDM requirements

The aim is to satisfy the SDM requirements via appropriate
method fragments in order to design the required method-
ology. Efforts aiming at developing any SDM should begin
by clearly defining what the situational requirements of such
SDMs are. Method engineers are responsible for mapping
the elicited high-level requirements of the project to method
fragments. For simplicity, we envisaged a direct mapping
between SDM requirements and method fragments [21].
When the SDM requirements were fixed, method engineers
clarified SDM requirements as shown in Table 20. Stakehold-
ers have imposed some requirements. For instance, business

processes modeling and improvement were forced due to the
explicit request of stakeholders to receive a detailed docu-
mentation of their as-is and to-be business processes. Other
requirements were relevant to SDM quality such as agility
of development process, fast responsiveness to business vol-
atility, flexibility, time, and cost of system development.

8.3.3 Method fragment selection

To illustrate how the proposed method fragments can be
really incorporated during construction a service-oriented
SDM, we confined ourselves to a simple manual process
for method fragments selection, rather an automatic method
fragments selection with an ontology flavor [17]. To realize
such SDM requirements through method fragments, method
engineers started by setting the overall development life cycle
at the highest level of abstraction by using the Business Opti-
mization Phase, Initiation Phase, Construction Phase, Deliv-
ery Phase, Usage Phase, Retirement Phase method frag-
ments. All other fine-grain method fragments were placed
into phase method fragments. After that, method engineers
elaborated the SDM using task method fragments. To do this,
method engineers took a set of consecutive inference and
decisions based on the requirements and their relations with
task method fragments. By considering the sections of each
task method fragments, method engineers figured out which
task(s) matched a requirement. Table 21 synopsizes how each
requirement has been satisfied through one or more method
fragments. According to this table, analyzing each require-
ment signifies one or more work products that should be
produced to realize a target requirement. So, a method engi-
neer selects relevant task method fragments to achieve the
required work products. It should be noted that all method

Table 20 SDM requirements

Identifier Name Explanation

#R1 Utilizing External Services Organization decided to use third party e-bank services to supply chain
of business processes

#R2 Improving Business Process The improvement of residency business processes was imperative

#R3 Using Legacy Systems Services In order to reduce cost and effort of system development, potential
legacy functionalities should be reused. In this regard, a number of
old Fox Pro resident systems existed irrespective of being out of date

#R4 Modernizing Legacy Systems Existing NGO legacy system and related operational databases should
be modernized without stopping the current business processes.
Traditional databases should be replaced by novel technologies

#R5 Conforming to Stated Quality of Services Quality of external Web Services, specifically full availability and rate
of discount per transaction are essential requirements

#R6 Provide Residency as Service The residency business process should be exposed as a service to
external consumers

#R7 Requirements-Based Elicited requirements should be considered in the development of
services and consequently the target system. A past unsuccessful
experience in NGO domain has shown that a miss-understanding of
requirements has lead to the development of a useless system

123

www.manaraa.com

384 M. F. Gholami et al.

Table 21 Selected tasks versus SDM requirements

Requirement Mapping requirements to relative method fragments

Identifier Analyzing the Requirement Deduced Required Work Products Relative Task Method Supportive Technique
Fragment(s)

#R1 Utilizing external services need
to look after for the most
appropriate Web-Services.
Next, a contract with external
supplier to remain on
acceptable of QoS should be
contracted. Web Services
should be monitored during
the usage to prevent
degrading of QoS

A list of candidate Web Service
should be discovered on the
web

For selected Web Services a
consensus between service
provider and consumer should
be contracted

Web Service should be
observed during the usage

Specify SLA
Discover Necessary Web

Services
Monitor Operational

Web Services

Create SLA contract
Search Web Services
Monitor the QoS of Web

Services

#R2 The current business processes
should be modeled, analyzed
and re-engineered wherever
an improvement is urgent

Modeling current business mod-
els

Make improvement on the
business process

Process Needs
Assessment
Process Tailoring
Process Mandating

Existing Techniques [14,15]
Existing Techniques [14,14]
Existing Techniques [13,15]

#R3 The feasibility and practicality
of currently deployed legacy
systems should be assessed
whether business logic of
existing logic can be wrapped
with Web Service
technologies while data
reside on them

A list of candidate business log-
ics can be wrapped into Web
Services technology

State of readiness NGO’s
infrastructure

Evaluate Environment
Readiness

Create a Readiness
Report

#R4 While the new system has
significant impact on through
of the NGO so modernization
strategies and alternative
solutions should be assessed

Producing an approved strategy
or more strategies to migrate
to a new service-oriented
system

Plan Transition Make Transition Plan

#R5 External Web Service that
called via NGO system
should be monitored
continuously. Ones that work
improperly and violate from
theirs contracts should be
replaced with new Web
Services

Need to monitor procedure for
Web Services adopted in
system according to contracts

Compose Web Service
dynamically

Specify SLA

Reconfigure Composite
Web Services

Create SLA Contract

#R6 The goal of the requirement is
to decompose booking and
paying business process into
set of service in or to achieve
integrity and reusability of
process

A list of candidate service that
from residency business
process

Identify Services
Specify Details of

Services

Top-Down
Bottom-Up
Add Specific Details to

Services

#R7 Software’s requirements should
be formally elicited,
documented into requirement
engineering documents and
then validated by all
stakeholders

A list of identified and
prioritized software
requirements and
requirements models

Requirements Identification
Requirements Prototyping
Requirements Specification
Stakeholder Profiling
Technology Analysis

Existing Techniques [14,15]
Existing Techniques [15,15]
Existing Techniques [14,14]
Existing Techniques [13,15]
Existing Techniques [14,15]

fragments need not be included in a project-specific SDM
due to project requirements.

The existing OPF repository can be used for requirement
elicitation, specification, and validation. For such tasks, some
of the existing general techniques have been adopted, which
are most commonly used in any situation and so are incor-
porated in the constructed SDM. Selection of other tasks

is based on the SDM requirements. For instance, method
engineers select the Specify Service Level Agreement (SLA),
Discover Necessary Web Services, and Monitor Operational
Web Services tasks to satisfy #R1. For improving existing
business processes, OPF contains numerous tasks that help
business processes to be partially or fully optimized. These
tasks that are placed in the Business Optimization Phase

123

www.manaraa.com

Enhancing the OPEN Process Framework 385

method fragment assist method engineers to explore orga-
nization business processes and re-engineer them based on
needs (refer to #R2).

While a number of residency systems have been devel-
oped independently in the organization and have now
become obsolete, the Evaluate Environment Readiness task
is selected to assess the documents of the legacy systems
to see if they have any asset that can be reused (refer to
#R3). The task had significant effect on reducing cost and
time of development. Moreover, the old residency system’s
databases contained a large amount of history records about
employees that should have been made available to the new
system without losing their integrity. In this regard, the Plan
Transition task was selected (refer to #R4). As the last func-
tional requirement that the custom SDM should be supported,
the Compose Web Service Dynamically was selected to sat-
isfy #R5. For instance, e-bank services were replaced by
other services, while the availability of the current service
provider was reduced. Selection of some method fragments
was unavoidable due to the special situation of the project.
For instance, the selection of the Identify Services and Spec-
ify Details of the Services tasks were due to defining and
exposing residency business processes as services (refer to
#R6).

Having determined the overall development process via
selection of appropriate method fragments, we had to show
how the chosen tasks had to be performed Method engineers
concretized each selected task by associating it with a specific
supportive technique (Table 20). For example, to define the
right services, method engineers associated Top-down and
Bottom-up approaches to the Identify Services task.

For brevity, responsible roles and related artifacts are not
shown in Table 21; they should be defined in real situations.
The important point to note is that the resulting methodology
must be further refined and adapted iteratively by method
engineers during the maintenance of the system, in accor-
dance with the project situation through iterative process
reviews of the development process.

We can now empirically validate the usability of the pro-
posed method fragments using Eq. 3. According column 1
of Table 20, the number of SDM requirements was 7. In
addition, as shown in column 1 of Table 21, the number of
requirements satisfied by one or more method fragments was
also 7. According to Eq. 3, the percentage of requirements
satisfaction is 7/7, meaning that all the requirements had been
met by the proposed method fragments (100% usability).

8.4 Second case study

8.4.1 Scenario

We have chosen the Driver Assistance System (DAS) pre-
sented in [100] as our second case study. In contrast to the

first case study that we did really implement in the context of
a real software development project, we did not implement
the second case study in real and just used it to show concep-
tually whether its SDM requirements were satisfied by our
proposed method fragments or not.

DAS is categorized in the domain of real-time automotive
systems that have high potential for SOSD utilization. DAS
considers a target system with a number of sensors assisting
the driver to monitor the safety features of the car such as the
engine oil level, pressure of the cylinder heads, and the lock-
ing status of the doors. Sensors are equipped with safety crit-
ical embedded programs that check the status of that car and
report potential failures or mishaps to the driver by trigger-
ing the execution of workflows composed of Web-Services
that orchestrate Web-Services to aid the driver to decide what
to do. For example, DAS aids the driver to select a suitable
car service such as a garage, a tow truck, or a rental ser-
vice in the area based on the received data from the car GPS
system before or upon failures or crashes. The driver may
specify preferences such as the desired garages, acceptable
road and traffic conditions, affordable repair costs, and pos-
sible methods of money payments. On the other hand, DAS
may know about some services such as accessible car ser-
vice companies, truck companies, and parts retailers. Guided
by such information provided by DAS, the driver can order
appropriate services while diagnostic data about the car sta-
tus is sent automatically to service providers, e.g., to dispatch
spare parts to the driver location. Figure 5 shows an abstract
schema of DAS. It is assumed that a safety critical real-time
subsystem in the core of DAS checks the status of the car
engine periodically and keeps an updated list of available car
services.

8.4.2 SDM requirements

We have assumed that the company developing hypothetical
software for DAS has set a new policy to migrate from tra-
ditional development of software from scratch (i.e., design,
implementation, and test) to an assembling approach by using
existing services to reduce the time and effort required to

Fig. 5 An abstract schema of DAS

123

www.manaraa.com

386 M. F. Gholami et al.

develop the software. Some situational factors have led the
company to set this new policy. We have also assumed that
most of the software developers in the company are expert
and experienced in the development of data-intensive infor-
mation systems rather than real-time systems. In addition,
there are budget restrictions.

From the SME point of view, the development team must
define a situational SDM in which a set of consecutive tasks
aid them in the development of DAS. The method engineer
should designate a situational SDM that meets the require-
ments of stakeholders in a timely and reasonable manner. The
method engineer is also responsible for defining the SDM
requirements and map them to relevant method fragments.
Table 22 lists the key SDM requirements that the method
engineer has identified.

8.4.3 Method fragment selection

We again confine ourselves to a simple manual process for
the selection of method fragments, rather an automatic selec-
tion process. In line with situational factors of the company,
the method engineer creates a composed service by using of
a set of available fine-grain Web-Services. The main effort of
the method engineer is thus spent on finding a set of relevant
services to be intertwined together.

To develop a new SDM, the method engineer decides on
the lifecycle of the SDM by selecting from phase method
fragments, namely the Initiation Phase, Construction Phase,
Delivery Phase, and Usage Phase method fragments. He/she
then completes the details of the SDM by using the proposed
task method fragments. To do this, the method engineer ana-
lyzes the sections of each task method fragment and figures
out which task(s) match a requirement. It should be noted
that #R1, #R2 and #R3 requirements are similar to each other,
allowing the method engineer to select the same task method
fragment for them all. Table 23 synopsizes how each require-
ment is satisfied by one or more proposed method fragments.

Because the proposed set of method fragments mainly
focus on SOSD aspects, the method engineer cannot find
any relevant support for #R5 and #R6. Therefore, #R5 and
#R6 requirements remain unsupported by the method frag-
ments and must be developed by the company from scratch.
In fact, this is an example describing why the OPF reposi-
tory should be enhanced with specific method fragments for
real-time development.

According to column 1 of Table 22, the numbers of SDM
requirements are 6, while the numbers of requirements met by
the method fragments are 4 (column 1 of Table 23). Accord-
ing to Eq. 3, the percentage of requirements satisfaction is
therefore 4/6 implying 66% usability.

The two case studies presented here demonstrated how the
proposed method fragments were used in the construction of
a specific service-oriented SDM based on the enhanced OPF
repository. In both case studies, a method engineer first elic-
ited SDM requirements and then designed an SDM by select-
ing relevant method fragments from the repository. Both case
studies were focused on the process of selecting method frag-
ments rather than performing all steps involved in the con-
struction of an SDM.

9 Conclusion and future works

In this research work, we presented a set of new service-ori-
ented method fragments that were derived from prominent
service-oriented SDMs. These method fragments conform
to the OPEN metamodel. We showed how method engineers
could select appropriate fragments from the enhanced repos-
itory of OPF to construct project-specific service-oriented
SDMs effectively.

In this work, we used a number of supportive techniques
to derive our proposed method fragments. However, there
is a need for more alternative techniques based on the pro-
ject situation. Moreover, search for new method fragments
as an ongoing process is needed. For instance, project man-

Table 22 SDM requirements

Identifier Name Explanation

#R1 Constraint on budget No code must be implemented from scratch, except for trivial parts. Stakeholders have
mandated to utilize as much as independent and available reusable Web-Services to
construct the software through assembly and reduce the cost of development

#R2 Deploying minimum
number of developers

As a sub requirement derived from #R1, stakeholders have decided to use a minimum
number of developers

#R3 User preferences Driver’s preferences should be taken into account when selecting a car service

#R4 Risk of developer skill The development team has little developers familiar with the Web-Service technology.
They should thus use as many ready Web Services as possible

#R5 Implement and
assemble hardware

The low-level code for sensors, timers, analog/digital converter, hardware wrapper, and
I/O drivers should be designed, implemented, and tested. In addition, hosted hardware
capability should be tested

#R6 Hardware Validation Symbolic execution of hardware program should be performed to ensure correctness of
code

123

www.manaraa.com

Enhancing the OPEN Process Framework 387

Table 23 Selected tasks versus SDM requirements

Requirement Mapping requirements to relative method fragments

Identifier Analyzing the Requirement Deduced Required Work Products Relative Task Method Supportive Techniques
Fragment(s)

#R1 In spite of development
embedded code for sensors,
other elements of the
software systems should be
provided via external service.
So, obtaining Web-Services
from outside reduce cost of
project. This leads to
searching Web-Services and
composing them in order to
satisfy user requirements.
Developed system is a
composite Web-Service that
orchestrates a number of
fine-grain Web-Services

A list of candidate Web Services
in the Web should be discov-
ered based on driver prefer-
ences

SLA of the candidate
Web-Service evaluated and
those will be selected that
satisfy driver requirements

Discover Necessary Web
Services

Specify SLA

Search Web Services
Create SLA contract

#R2 This requirement has
overlapping with #R1:
Utilizing existing exposed
Web-Service has significant
impact on time and effort of
software system development

A list of candidate Web
Services that meet driver

Discover Necessary
Web Services

Search Web Services

#R3 This requirement is similar to
#R1 and #R2

Similar to R2 Similar to R2 Similar to R2

#R4 This requirement is
similar to #R1 and
#R2

Similar to R2 Similar to R2 Similar to R2

#R5 Not supported – – –

#R6 Not supported – – –

agement practices in SOSD need a new approach. Obviously,
there are other service-oriented method fragments that we did
not consider in our work. While a service-oriented software
undergoes development by a number of possibly distributed
development teams, it may raise new project management
issues in terms of team management, cost, and effort esti-
mation. Future work can thus enrich the proposed method
fragments with more supportive service-oriented techniques
and search for other necessary method fragments that are
important in new situations and in new software paradigms.
Applications of the proposed method fragments in the con-
struction of service-oriented SDMs in real projects can also
help refining and evolving the fragments, as well as validat-
ing it more fully. We did present two case studies to indicate
how the proposed fragments can be used in the construction
of SDMs, but more case studies especially in real projects
are in order. A systematic assessment of the method frag-
ments can be conducted through a hypothesize test that is
a well-known technique for evaluating a proposed argument
[100]. In short, this test evaluates how much the method frag-
ments can be applicable and useful to software development
organizations that use the proposed method fragments and
those that do not use them during the construction of

service-oriented SDMs. Of course, applying such a holistic
test is very expensive, time-consuming, and thus was consid-
ered out of the scope of our research reported in this paper.

Acknowledgments We dearly thank Professor Brian Henderson-
Sellers for his valuable comments on our research work. Only the third
author’s contribution to the research reported in this paper has been sup-
ported, in part, by the Science Foundation Ireland grant 10/CE/I1855 to
Lero - the Irish Software Engineering Research Centre (www.lero.ie)

References

1. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A
journey to highly dynamic, self-adaptive service-based applica-
tions. Autom. Softw. Eng. 15(3–4), 313–341 (2008)

2. Papazoglou, P., Traverso, P., Dustdar, S., Leymann, F.: Service-
oriented computing: state of the art and research challenges. IEEE
Comput. 40(11), 38–45 (2007)

3. Tsai, W.T.: Service-oriented system engineering: a new paradigm.
In: Proceedings of the IEEE International Workshop on Service-
Oriented System Engineering (SOSE), pp. 3–6, Beijing, China,
2005

4. Qing. G., Lago, P.: Guiding the selection of service-oriented
software engineering methodologies. Service Oriented Comput.
Appl. 1–21 (2011). doi:10.1007/s11761-011-0080-0

123

www.lero.ie
http://dx.doi.org/10.1007/s11761-011-0080-0

www.manaraa.com

388 M. F. Gholami et al.

5. Kumar, K., Welke, R.J. : Methodology engineering: a proposal
for situation-specific methodology construction. In: Cotterman,
W.W., Senn, J.A. (eds.) Challenges and Strategies for Research in
Systems Development, pp. 257–269. Wiley, Chichester (1992)

6. Brinkkemper, S.: Method engineering: engineering of informa-
tion systems development methods and tools. Inf. Softw. Tech-
nol. 38(4), 275–280 (1996)

7. Ralyte, J.: Towards situational methods for information systems
development: engineering reusable method chunks. In: Proceed-
ings of the 13th Int. Conf. on Information Systems Development.
Advances in Theory, Practice and Education, pp. 271–282, Vil-
nius, Lithuania, 2004

8. Ralyté, J., Rolland, C. : An assembly process model for method
engineering. In: Dittrich, K.L., Geppert, A., Norrie, M.C. (eds.)
Advanced Information Systems Engineering. LNCS, vol.
2068, pp. 267–283. Springer, Berlin (2001)

9. Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process
Framework. An Introduction. Pearson Education Limited, Har-
low (2002)

10. Nguyen, V.P., Henderson-Sellers, B.: Towards automated support
for method engineering with the OPEN approach. In: Proceedings
of the 7th IASTED SEA Conference, pp. 691–696. ACTA Press,
Anaheim (2003)

11. Harmsen, A.F., Brinkkemper, S., Oei, H.: Situational method engi-
neering for information systems projects. In: Olle, T.W., Verrijn-
Stuart, A.A. (eds.) Methods and Associated Tools for the Informa-
tion Systems Life Cycle. Proceedings of the IFIP WG8.1 Work-
ing Conference Cris/94, North Holland, Amsterdam, pp. 169–194
(1994)

12. Ralyté, J., Rolland, C.: An approach for method engineering. In:
Proceedings of the 20th International Conference on Conceptual
Modeling (ER2001). LNCS, vol. 2224, pp. 471–484. Springer,
Berlin (2001)

13. Henderson-Sellers, B., Gonzalez-Perez, C., Ralyté, J.: Compar-
ison of method chunks and method fragments for situational
method engineering. In: Proceedings of the 19th Australian Soft-
ware Engineering Conference (ASWEC2008), pp. 479–488, Los
Alamitos, CA, USA, 2008

14. Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process
Framework. Addison-Wesley, London (2002)

15. Graham, I., Henderson-Sellers, B., Younessi, H.: The OPEN Pro-
cess Specification, pp. 314–465. Addison-Wesley, London (1997)

16. Fahmideh, M., Jamshidi, P., Shams, F.: A procedure for extracting
software development process patterns. In: Proceedings of the 5th
UKSim European Symposium on Computer Modeling and Sim-
ulation (EMS), pp. 75–83 (2010)

17. Nguyen, V.P., Henderson-Sellers, B.: OPENPC: a tool to auto-
mate aspects of method engineering. In: Proceedings of the 16th
International Conference on Software and Systems Engineering
and Their Applications, ICSSEA 2003, Paris, France (2003)

18. Kumar, K., Welke, R.J. : Method engineering: a proposal for situ-
ation-specific methodology construction. In: Cotterman, W.W.,
Senn, J.A. (eds.) Systems Analysis and Design: A Research
Agenda, pp. 257–268. Wiley, Chichester (1992)

19. Henderson-Sellers, B., Ralyté, J.: Situational method engi-
neering: state-of-the-art review. J. Univ. Comput. Sci. 16(3),
424–478 (2010)

20. Hofstede, A.H.M., Verhoef, T.F.: On the feasibility of situational
method engineering. Inf. Syst. J. 22(6/7), 401–422 (1997)

21. Saeki, M.: Toward automated method engineering: supporting
method assembly in CAME. In: Workshop on Engineering Meth-
ods to Support Information Systems Evolution EMSISE’03,
Geneva, Switzerland, 2003

22. Serour, M.K., Henderson-Sellers, B.: The Role of Organization
Culture on the Adoption and Diffusion of Software Engineering

Process: An Empirical Study Pearson/IFIP, pp. 76–88, Sydney,
Australia, 2002

23. Henderson-Sellers, B., Edwards, J.M.: BOOKTWO of Object-
Oriented Knowledge: The Working Object, pp. 594–634.
Prentice-Hall, Sydney (1994)

24. Graham, I.: Migrating to Object Technology. Addison-Wes-
ley, Wokingham (1995)

25. ISO/IEC Software Engineering: Metamodel for Development
Methodologies, ISO/IEC 24744, International Organization
for Standardization/International Electrotechnical Commission,
Geneva, Switzerland, 2007

26. Informational Website on the OPEN Process Framework (OPF).
http://www.opfro.org/

27. Henderson-Sellers, B., Hutchison, J.: (2003) Usage-centered
design (UCD) and the OPEN process framework (OPF). In:
Constantine, L.L. (ed.) Performance by Design. Proceedings of
USE2003, Second International Conference on Usage-Centered
Design, pp. 171–196. Ampersand Press, Rowley (2003)

28. OMG: OMG Unified Modeling Language Specification, Version
1.4, OMG Documents Formal/01-09-68 through 80 (13 Docu-
ments), 2001. http://www.omg.org

29. Firesmith, D., Henderson-Sellers, B., Graham, I.: OPEN Mod-
eling Language (OML): Reference Manual. pp. 276–285. SIGS
Books, New York (1997)

30. Nguyen, V.P., Henderson-Sellers, B.: Towards automated support
for method engineering with the OPEN approach. In: Proceedings
of the 7th IASTED Sea Conference, pp. 691–696. Acta Press,
Anaheim (2003)

31. Bass, L., Clements, P., Kazman, R.: Software Architecture in Prac-
tice. Addison-Wesley, London (2003)

32. Henderson-Sellers, B., Simons, A.J.H., Younessi, H.: The OPEN
Toolbox of Techniques. Pearson Education Limited, UK (1998)

33. Henderson-Sellers, B.: An OPEN process for component-based
development. In: Heineman, G.T., Councill, W. (eds.) Com-
ponent-Based Software Engineering: Putting the Pieces
Together, pp. 321–340. Addison-Wesley, Reading (2001)

34. Haire, B., Henderson-Sellers, B., Lowe, D.: Supporting web
development in the OPEN process: additional tasks. In: Pro-
ceedings of 25th Annual International Computer Software and
Applications Conference. COMPSAC 2001, pp. 383–389. IEEE
Computer Society Press, Los Alamitos, CA, USA (2001)

35. Henderson-Sellers, B., Haire, B., Lowe, D.: Using OPEN’s Deon-
tic matrices for e-business. In: Rolland, C., Brinkkemper, S., Sae-
ki, M. (eds.) Engineering Information Systems in the Internet Con-
text, pp. 9–30. Kluwer, Boston (2002)

36. Henderson-Sellers, B., France, R.B., Georg, G., Reddy, R.: A
method engineering approach to developing aspect-oriented mod-
eling processes based on the open process framework. Inf. Softw.
Technol. 49(7), 761–773 (2007)

37. Debenham, J., Henderson-Sellers, B.: Designing agent-based pro-
cess systems—extending the OPEN process framework. In: Ple-
khanova, V. (ed.) Chapter VIII in Intelligent Agent Software Engi-
neering, pp. 160–190. Idea Group Publishing, Hershey (2003)

38. Henderson-Sellers, B., Debenham, J.: Towards OPEN method-
ological support for agent-oriented systems development. In:
Proceedings of the First International Conference on Agent-Based
Technologies and Systems, pp. 14–24. University of Canada, Can-
ada (2003)

39. Low, G., Mouratidis, H., Henderson-Sellers, B.: Using a situa-
tional method engineering approach to identify reusable method
fragments from the secure TROPOS methodology. J. Object Tech-
nol. 9(4), 93–125 (2010)

40. BrescianiP. Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini,
A.: TROPOS: an agent oriented software development methodol-
ogy. J. Autono. Agents Multi Agent Syst. 8(3), 203–236 (2004)

123

http://www.opfro.org/
http://www.omg.org

www.manaraa.com

Enhancing the OPEN Process Framework 389

41. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: High variabil-
ity design for software agents: extending Tropos. ACM Trans.
Autonom. Adapt. Syst. 2(4), 16–27 (2007)

42. Henderson-Sellers, B., Serour, M.: Creating a Process for Transi-
tioning to Object Technology. In: Proceedings of the 7th Asia-
Pacific Software Engineering Conference, APSEC 2000, pp.
436–440. IEEE Computer Society Press, Los Alamitos, CA, USA,
2004

43. Serour, M., Henderson-Sellers, B., Hughes, J., Winder, D., Chow,
L. : Organizational transition to object technology: theory and
practice. In: Bellahse‘ne, Z., Patel, D., Rolland, C. (eds.) Object-
Oriented Information Systems. Lecture Notes in Computer Sci-
ence (LNCS), vol. 2425, pp. 229–241. Springer, Berlin (2002)

44. Henderson-Sellers, B., Hutchison, J.: Usage-Centered Design
(UCD) and the OPEN Process Framework (OPF). In: Constan-
tine, L.L. (ed.) Performance by Design. Proceedings of USE2003,
Second International Conference on Usage-Centered Design, pp.
171–196. Ampersand Press, Rowley (2003)

45. Fahmideh, M., Shams, M., Jamshidi, P: Toward a methodo-
logical knowledge for service-oriented development based on
open meta-model. In: 2nd International Conference on Software
Engineering and Computer Systems (ICSECS2011), Pahang,
Malaysia, 2011

46. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-
oriented computing: state of the art and research challenges. IEEE
Comput. 40(11), 38–45 (2007)

47. Lane, S., Richardson, I.: Process models for service based applica-
tions: a systematic literature review. Inf. Softw. Technol. (2010).
doi:10.1016/j.infsof.2010.12.005

48. Ramollari, E., Dranidis, D., Simons, A.J.H.: A Survey of ser-
vice-oriented development methodologies. In: The 2nd European
Young Researchers Workshop on Service-Oriented Computing,
Leicester, UK, June 2007

49. Fahmideh, M., Habibi, J., Shams, F., Khoshnevis, S.: Criteria-
based evaluation framework for service-oriented methodologies,
UKSim. In: Proceedings of the 12th International Conference on
Computer Modeling and Simulation, pp. 122–130. Emmanuel
College, Cambridge University, UK (2010)

50. Graham, S.: Building Web Services with Java, 2nd edn. SAMS
Publishing (2005)

51. Papazoglou, M.P., Heuvel, W.V.D.: Service-oriented design and
development methodology. Int. J. Web Eng. Technol. 2(4), 412–
442 (2006)

52. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy,
S., Holley, K.: SOMA: a method for developing service-oriented
solutions. IBM Syst. J. 47(3), 377–396 (2008)

53. SUN Microsystems: SOA RQ Methodology—A Pragmatic
Approach. http://www.sun.com/products/soa/soamethodology.
pdf

54. Kruchten, P.: Rational Unified Process: An Introduction, 3rd
edn. Addison-Wesley, Reading (2003)

55. Beck, K., Andres, C.: Extreme Programming Explained: Embrace
Change, 2nd edn. Addison-Wesley, Reading (2004)

56. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Soft-
ware Development Methods: Review and Analysis. VTT Publi-
cations, Finland (2002)

57. Allen, P.: The Service-Oriented Process. CBDI J. (2007).
http://www.cbdiforum.com/reportsummary.php3?page=/secure/
interact/2007-02/serviceorientedprocess.php&area=silver

58. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall PTR, Upper Saddle River (2005)

59. Keith, M.: SOMA, RUP and RMC: The Right Combina-
tion for Service-Oriented Architecture. IBM�WebSphere� User
Group, Bedfont (2008)

60. Zimmermann, O., Krogdahl, P., Gee, C.: Elements of Service-
Oriented Analysis and Design. IBM Corporation (2004). http://
www-128.ibm.com/developerworks/library/wssoad1/

61. Mittal. K.: Service-Oriented Unified Process (SOUP) (2006).
http://www.kunalmittal.com/html/soup.shtml

62. Chang, S., Kim, S.: A systematic approach to service-oriented
analysis and design. In: Proceedings of the International Confer-
ence on Product-Focused Software Process Improvement (PRO-
FESS 2007), pp. 374–388. Springer, Berlin (2007)

63. Jones, S.: A Methodology for Service Architectures. Capgemini
UK Plc, UK (2005). http://www.oasisopen.org/committees/
download.php/methodologyforServiceArchitectures-ASIS-
Contribution.pdf

64. Erradi, A.: SOAF: An architectural framework for service defi-
nition and realization. In: Proceedings of the IEEE International
Conference on Services Computing, pp. 151–158, Chicago, USA,
September 2006

65. Ralyté, J.: Towards situational methods for information systems
development: engineering reusable method chunks. In: Proceed-
ings of ISD 2004, pp. 271–282, Vilnius, Lithuania, 2004

66. Ambler, S.W.: Process Patterns Building Large-Scale Systems
using Object Technology. Cambridge University Press, Cam-
bridge (1998)

67. Fahmideh, M., Sharifi, M., Jamshidi, P., Shams, F., Haghighi,
H.: Process Patterns for Service-Oriented Software Development.
In: Proceedings of the 5th IEEE International Conference on
Research Challenges in Information Science (RCIS’2011), Gua-
deloupe, French West Indies, France, 2011

68. Meier, F.: Service-Oriented Architecture Maturity Models:
A Guide to SOA Adoption, Meier Fabian, Student Thesis
(2006)

69. SOA Maturity Model: Compass on the SOA Journey. http://www.
soainstitue.org/articles/article/soa-maturity-model-compass-on-
the-soa-journey.html

70. Almonaies, A., Cordy, J.R., Dean, T.R.: Legacy System Evolu-
tion Towards Service-Oriented Architecture. In: Proceedings of
SOAME 2010, International Workshop on SOA Migration and
Evolution, pp. 53–62, Madrid, Spain, March 2010

71. McBride, G.: The Role of SOA Quality Management in SOA Ser-
vice Lifecycle Management (2007). http://ftp.software.ibm.com/
software/rational/web/articles/soa_quality.pdf

72. Johnston, S.: UML 2.0 Profile for Software Services, IBM,
Software Group. http://www.ibm.com/developerworks/rational/
library/05/419_soa/

73. Perepletchikov, M., Ryan, C., Frampton, K., Tari, Z.: Coupling
metrics for predicting maintainability in service-oriented designs.
In: Proceedings of the 18th Australian Conference on Software
Engineering (ASWEC’07), pp. 329–340, Melbourne, Australia,
(2007)

74. Perepletchikov, M., Ryan, C., Frampton, K.: Cohesion Metrics
for Predicting Maintainability of Service-Oriented Software, pp.
328–335. QSIC, Portland (2007)

75. Garlan, D.: Software Architecture. In: Finkekstein A. (ed.) A
Roadmap in the Future of Software Engineering. ACM Press,
NY (2000)

76. Canfora, G., Fasolino, A.R., Frattolillo, G., Tramontana, P.:
Migrating Interactive Legacy Systems to Web Services. In:
CSMR, pp. 24–36 (2006)

77. Canfora, G., Fasolino, A.R., Frattolillo, G., Tramontana,
P.: A wrapping approach for migrating legacy system inter-
active functionalities to service oriented architectures. J. Syst.
Softw. 81(4), 463–480 (2008)

78. Stroulia, E., El-Ramly, M., Sorenson, P.G., Penner, R.: Legacy
Systems Migration in CelLEST. In: ICSE Posters (2000)

123

http://dx.doi.org/10.1016/j.infsof.2010.12.005
http://www.sun.com/products/soa/soamethodology.pdf
http://www.sun.com/products/soa/soamethodology.pdf
http://www.cbdiforum.com/reportsummary.php3?page=/secure/interact/2007-02/serviceoriented process.php&area=silver
http://www.cbdiforum.com/reportsummary.php3?page=/secure/interact/2007-02/serviceoriented process.php&area=silver
http://www-128.ibm.com/developerworks/library/wssoad1/
http://www-128.ibm.com/developerworks/library/wssoad1/
http://www.kunalmittal.com/html/soup.shtml
http://www.oasisopen.org/committees/download.php/methodologyforServiceArchitectures-ASIS-Contribution.pdf
http://www.oasisopen.org/committees/download.php/methodologyforServiceArchitectures-ASIS-Contribution.pdf
http://www.oasisopen.org/committees/download.php/methodologyforServiceArchitectures-ASIS-Contribution.pdf
http://www.soainstitue.org/articles/article/soa-maturity-model-compass-on-the-soa-journey.html
http://www.soainstitue.org/articles/article/soa-maturity-model-compass-on-the-soa-journey.html
http://www.soainstitue.org/articles/article/soa-maturity-model-compass-on-the-soa-journey.html
http://ftp.software.ibm.com/software/rational/web/articles/soa_quality.pdf
http://ftp.software.ibm.com/software/rational/web/articles/soa_quality.pdf
http://www.ibm.com/developerworks/rational/library/05/419_soa/
http://www.ibm.com/developerworks/rational/library/05/419_soa/

www.manaraa.com

390 M. F. Gholami et al.

79. Stroulia, E., El-Ramly, M., Sorenson, P.G.: From Legacy to Web
through Interaction Modeling. In: ICSM, pp. 320–329. Montreal,
QC, Canada (2002)

80. Sneed, H.M.: Wrapping Legacy Software for Reuse in SOA, Tech-
nical Report (2005). http://www.techrepublic.com/whitepapers/
wrapping-legacy-software-for-reuse-in-a-soa/286064

81. Business Process Modeling Initiative: Business Process Modeling
Language. http://www.bpmi.org

82. Leymann, F.: Web Service Flow Language (2001). http://www.
ibm.com/software/solutions/webservices/pdf/WSFL.pdf

83. Andrews, T., Curbera, F., Dholakia, H., Goland, Y.: Business
Process Execution Language for Web Services, Version 1.0.31.
(2002). http://www.ibm.Comrdeveloperworksllibrary/ws-bpel

84. Rao, J., Su., X.: A survey of automated web service composi-
tion methods. In: Proceedings of the First International Work-
shop on Semantic Web Services and Web Process Composition,
SWSWPC 2004, San Diego, CA, USA, 6 July 2004

85. Dustdar, S., Schreiner, W.: A survey on web services composi-
tion. Int. J. Web Grid Serv. 1, 1–30 (2005)

86. Henderson-Sellers, B., Qumer, A.: Using method engineering
to make a traditional environment agile. Cutter IT J. 20(5),
61–74 (2007)

87. IK Relief Foundation. http://emdad.ir/upload/crm
88. Henderson-Sellers, B., Gonzalez-Perez, C.: Towards the use of

granularity theory for determining the size of atomic method
fragments for use in situational method engineering. In: IFIP
WG8.1 Working Conference on Method Engineering—ME’11,
Paris, France, 2011 (in press)

89. Boehm, B.: Software Engineering Economic, p. 37. Prentice-Hall,
Englewood Cliffs (1981)

90. Pressman, R.: Software Engineering. A practitioner’s approach,
6th edn. pp. 388 McGraw-Hill, NY (2005)

91. Mili, H., Mili, F., Mili, A.: Reusing software: issues and research
directions. IEEE Trans. Softw. Eng. 21(6), 528–562 (1995)

92. Maiden, N.A., Sutcliffe, A.G.: Exploiting reusable specifications
through analogy. Commun. ACM 35(4), 55–64 (1992)

93. Purao, S., Storey, V.: APSARA: a web-based tool to automate
system design via intelligent pattern retrieval and synthesis. In:
Proceedings of the 7th Workshop on Information Technologies &
Systems, pp. 180–189, Atlanta, GA, 1997

94. Han, T., Purao, S., Storey, V.C.: Generating large-scale reposi-
tories of reusable artifacts for conceptual design of information
systems. Decis. Support Syst. 45(4), 665–680 (2008)

95. Ramsin, R., Paige, R.F.: Process-centered review of object-
oriented software development methodologies. ACM Comput.
Surv. 40(1), 1–89 (2008)

96. Kenzi, A., El Asri, B., Nassar, M., Kriouile, A.: A model driven
framework for multiview service oriented system development.
In: International Conference on Computer Systems and Applica-
tions, pp. 404–411. IEEE Computer Society, USA (2009)

97. Object Management Group, MDA Guide Version 1.0.1. OMG
(2000)

98. Ralyté, J., Brinkkamper, S., Henderson-Sellers, B. (eds.): Situa-
tional Method Engineering: Fundamentals and Experiences. In:
Proceedings of the IFIP WG 8.1 Working Conference, Geneva,
Switzerland, September 12–14. IFIP International Federation for
Information Processing, vol. 244. Springer, Boston (2007)

99. ter Beek, M.H., Gnesi, S., Koch, N., Mazzanti, F.: Formal verifi-
cation of an automotive scenario in service-oriented computing.
In: Proceedings of the 30th International Conference on Software
Engineering (ICSE’08), Leipzig, Germany, pp. 613–622. ACM
Press, NY (2008)

100. Perry, D.E., Porter, A.A., Votta, L.G.: Empirical studies of soft-
ware engineering: a roadmap. In: Finkelstein, A. (ed.) Proceed-
ings of the Conference on Future of Software Engineering. ACM
Press, NY (2000)

Author Biographies

Mahdi Fahmideh Gholami
received his M.Sc. degree in soft-
ware engineering in 2007 from
the Iran University of Science and
Technology (IUST), Tehran, Iran.
He received his bachelor’s degree
in 2004 in software engineering
from Shahid Beheshti University,
Tehran, Iran. His areas of interests
include method engineering, soft-
ware engineering, and distributed
systems.

Mohsen Sharifi is an associate
professor of software engineer-
ing currently chairing the Com-
puter Engineering Department of
Iran University of Science and
Technology. He directs a distrib-
uted system software research
group and laboratory. His main
interest is in the engineering
and development of distributed
systems, especially in scientific
applications. The development
of a true distributed operating
system is on top of his wish list.
He received his B.Sc., M.Sc., and
Ph.D. in computer science from

the Victoria University of Manchester in the UK in 1982, 1986, and
1990, respectively. His home page is located in http://webpages.iust.ac.
ir/msharifi/.

Pooyan Jamshidi received his
M.Sc. degree in software engi-
neering in 2007 from the Amir
Kabir University (AKU), Tehran,
Iran. He received his bachelor’s
degree in 2004 in software engi-
neering from Amirkabir Univer-
sity, Tehran, Iran. His areas of
interests include method engi-
neering, software engineering,
and distributed systems. He is
currently studying software engi-
neering as a Ph.D. researcher in
3Lero, The Irish Software Engi-
neering Research Centre, School
of Computing, Dublin City Uni-
versity, Dublin, Ireland.

123

http://www.techrepublic.com/whitepapers/wrapping-legacy-software-for-reuse-in-a-soa/286064
http://www.techrepublic.com/whitepapers/wrapping-legacy-software-for-reuse-in-a-soa/286064
http://www.bpmi.org
http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.ibm.Comrdeveloperworksllibrary/ws-bpel
http://emdad.ir/upload/crm
http://webpages.iust.ac.ir/msharifi/
http://webpages.iust.ac.ir/msharifi/

www.manaraa.com

Copyright of Software & Systems Modeling is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	Enhancing the OPEN Process Framework with service-oriented method fragments
	Abstract
	1 Introduction
	2 Background
	2.1 Situational method engineering
	2.2 OPEN Process Framework as a foundation for SME
	2.2.1 Metamodel
	2.2.2 OPF repository

	3 Related work
	4 Service-oriented SDMs: appropriate sources for derivation of new method fragments
	5 Methods of identifying reusable method fragments
	6 Proposed Service-oriented method fragments
	6.1 Enhanced ProcessKind: requirements engineering
	6.2 Enhanced ProcessKind: environments engineering
	6.3 Enhanced New ProcessKind: plan project
	6.4 New ProcessKind: develop SOA governance model
	6.5 New ProcessKind: Design Services
	6.6 Enhanced ProcessKind: Service-Oriented Architecture Engineering
	6.7 Enhanced ProcessKind: develop services
	6.8 Enhanced ProcessKind: Reuse Engineering
	6.9 Enhanced ProcessKind: enable service-oriented solution
	6.10 Enhanced ProcessKind: maintenance

	7 Position of new method fragments in OPEN
	8 Evaluation
	8.1 Completeness
	8.1.1 Gap analysis

	8.2 Usability
	8.3 First case study
	8.3.1 Scenario
	8.3.2 SDM requirements
	8.3.3 Method fragment selection

	8.4 Second case study
	8.4.1 Scenario
	8.4.2 SDM requirements
	8.4.3 Method fragment selection

	9 Conclusion and future works
	Acknowledgments
	References

